摘要翻译:
我们给出了一个同样由Molev独立发现的正等变Littlewood-Richardson规则。我们的证明推广了Stembridge对普通Littlewood-Richardson规则的一个证明。我们描述了索引表和Knutson-Tao谜题之间的权重保持双射。
---
英文标题:
《Equivariant Littlewood-Richardson Skew Tableaux》
---
作者:
V. Kreiman
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Combinatorics 组合学
分类描述:Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
离散数学,图论,计数,组合优化,拉姆齐理论,组合对策论
--
---
英文摘要:
We give a positive equivariant Littlewood-Richardson rule also discovered independently by Molev. Our proof generalizes a proof by Stembridge of the ordinary Littlewood-Richardson rule. We describe a weight-preserving bijection between our indexing tableaux and the Knutson-Tao puzzles.
---
PDF链接:
https://arxiv.org/pdf/0706.3738


雷达卡



京公网安备 11010802022788号







