摘要翻译:
我们证明了以下两个结果1。对于圆盘上复流形$X$的一个全纯函数$f:X\到d$,使得$\{df=0\}\子集f^{-1}(0)$,我们用泛函的方法为每个整数$p$构造一个与$f$的(过滤的)高斯-马宁联系相关的几何(a,b)-模$e^p$\。第一个定理是一个存在性/有限性结果,它表明几何(a,b)-模可用于全局情形。2.对于任何正则(a,b)-模$E$,我们给出一个整数$N(E)$,它由$E$的简单不变量明确地给出,使得$E\big/b^{N(E)}的同构类。E$决定$E$的同构类。第二个结果允许在不丢失任何信息的情况下削减$E$元素的渐近展开式($B$)。
---
英文标题:
《Two finiteness theorem for $(a,b)$-module》
---
作者:
Daniel Barlet
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Complex Variables 复变数
分类描述:Holomorphic functions, automorphic group actions and forms, pseudoconvexity, complex geometry, analytic spaces, analytic sheaves
全纯函数,自守群作用与形式,伪凸性,复几何,解析空间,解析束
--
---
英文摘要:
We prove the following two results 1. For a proper holomorphic function $ f : X \to D$ of a complex manifold $X$ on a disc such that $\{df = 0 \} \subset f^{-1}(0)$, we construct, in a functorial way, for each integer $p$, a geometric (a,b)-module $E^p$ \ associated to the (filtered) Gauss-Manin connexion of $f$. This first theorem is an existence/finiteness result which shows that geometric (a,b)-modules may be used in global situations. 2. For any regular (a,b)-module $E$ we give an integer $N(E)$, explicitely given from simple invariants of $E$, such that the isomorphism class of $E\big/b^{N(E)}.E$ determines the isomorphism class of $E$. This second result allows to cut asymptotic expansions (in powers of $b$) \ of elements of $E$ without loosing any information.
---
PDF链接:
https://arxiv.org/pdf/0801.4320


雷达卡



京公网安备 11010802022788号







