摘要翻译:
这项工作提出了一种将统计建模与决策相结合的方法。我们提供了一种将预测建模中的不确定性传播到操作成本中的不确定性的方法,其中操作成本是实践者在解决问题时所花费的金额。该方法允许我们探索与操作成本相关的一套合理的统计模型,从而为从业者理解不确定性提供一种有用的方法。为此,操作成本在学习算法的目标函数中被转换为正则化项,允许根据正则化参数对可能的成本做出乐观或悲观的看法。从另一个角度来看,如果我们有关于操作成本的先验知识,例如操作成本应该很低,这种知识可以帮助限制假设空间,并有助于推广。我们给出了这种情况下的一个理论推广界。我们还表明,有操作代价的学习与鲁棒优化有关。
---
英文标题:
《Machine Learning with Operational Costs》
---
作者:
Theja Tulabandhula and Cynthia Rudin
---
最新提交年份:
2013
---
分类信息:
一级分类:Statistics 统计学
二级分类:Machine Learning 机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
---
英文摘要:
This work proposes a way to align statistical modeling with decision making. We provide a method that propagates the uncertainty in predictive modeling to the uncertainty in operational cost, where operational cost is the amount spent by the practitioner in solving the problem. The method allows us to explore the range of operational costs associated with the set of reasonable statistical models, so as to provide a useful way for practitioners to understand uncertainty. To do this, the operational cost is cast as a regularization term in a learning algorithm's objective function, allowing either an optimistic or pessimistic view of possible costs, depending on the regularization parameter. From another perspective, if we have prior knowledge about the operational cost, for instance that it should be low, this knowledge can help to restrict the hypothesis space, and can help with generalization. We provide a theoretical generalization bound for this scenario. We also show that learning with operational costs is related to robust optimization.
---
PDF链接:
https://arxiv.org/pdf/1112.0698


雷达卡



京公网安备 11010802022788号







