摘要翻译:
本文包含两个关于多环型群的等变K-理论的结果。第一个是任意仿射toric簇的等变k-群的公式,推广了已知的光滑k-群的公式。事实上,这个结果是在更一般的上下文中建立的,涉及到分次射影模的K-理论。第二个结果是Vezzosi和Vistoli关于光滑(不一定是仿射)toric变体的等变k-理论的一个定理的新证明。
---
英文标题:
《The equivariant K-theory of toric varieties》
---
作者:
Suanne Au, Mu-wan Huang, Mark E. Walker
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:K-Theory and Homology K-理论与同调
分类描述:Algebraic and topological K-theory, relations with topology, commutative algebra, and operator algebras
代数和拓扑K-理论,与拓扑的关系,交换代数和算子代数
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
This paper contains two results concerning the equivariant K-theory of toric varieties. The first is a formula for the equivariant K-groups of an arbitrary affine toric variety, generalizing the known formula for smooth ones. In fact, this result is established in a more general context, involving the K-theory of graded projective modules. The second result is a new proof of a theorem due to Vezzosi and Vistoli concerning the equivariant K-theory of smooth (not necessarily affine) toric varieties.
---
PDF链接:
https://arxiv.org/pdf/0809.3378


雷达卡



京公网安备 11010802022788号







