摘要翻译:
本文研究了利用进化乘积单元神经网络搜索最优分类模型的分布式处理问题。为了进行这种分布式搜索,我们使用了一组计算机。我们的目标是获得比那些不使用分布式进程的网络体系结构更有效的设计,从而导致更简单的设计。为了得到最佳的分类模型,我们使用进化算法来训练和设计神经网络,这需要非常耗时的计算。需要这种分配背后的原因是多方面的。由于复杂的误差曲面导致难以确定它们的结构,因此训练这种类型的网络是复杂的。另一方面,使用进化算法需要运行大量不同种子和参数的测试,从而导致较高的计算代价
---
英文标题:
《Distribution of the search of evolutionary product unit neural networks
for classification》
---
作者:
A.J. Tall\'on-Ballesteros, P.A. Guti\'errez-Pe\~na, C.
Herv\'as-Mart\'inez
---
最新提交年份:
2012
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Neural and Evolutionary Computing 神经与进化计算
分类描述:Covers neural networks, connectionism, genetic algorithms, artificial life, adaptive behavior. Roughly includes some material in ACM Subject Class C.1.3, I.2.6, I.5.
涵盖神经网络,连接主义,遗传算法,人工生命,自适应行为。大致包括ACM学科类C.1.3、I.2.6、I.5中的一些材料。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Computer Vision and Pattern Recognition 计算机视觉与模式识别
分类描述:Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.
涵盖图像处理、计算机视觉、模式识别和场景理解。大致包括ACM课程I.2.10、I.4和I.5中的材料。
--
---
英文摘要:
This paper deals with the distributed processing in the search for an optimum classification model using evolutionary product unit neural networks. For this distributed search we used a cluster of computers. Our objective is to obtain a more efficient design than those net architectures which do not use a distributed process and which thus result in simpler designs. In order to get the best classification models we use evolutionary algorithms to train and design neural networks, which require a very time consuming computation. The reasons behind the need for this distribution are various. It is complicated to train this type of nets because of the difficulty entailed in determining their architecture due to the complex error surface. On the other hand, the use of evolutionary algorithms involves running a great number of tests with different seeds and parameters, thus resulting in a high computational cost
---
PDF链接:
https://arxiv.org/pdf/1205.3336


雷达卡



京公网安备 11010802022788号







