摘要翻译:
在Green-Griffiths猜想的推动下,我们研究了从$\c^p$到复流形的极大秩全纯映射。当$P>1$时,这种地图原则上应该比整个曲线更容易处理。我们将Semple、Green-Griffiths和Demailly引入的jet-bundles技术扩展到这一背景。我们的主要应用是从$\c^2$到$\bp^4$中非常一般的度$d$超曲面的极大秩全纯映射的不存在性,直到$d\geq93.$
---
英文标题:
《Generalized Demailly-Semple jet bundles and holomorphic mappings into
complex manifolds》
---
作者:
Gianluca Pacienza (IRMA), Erwan Rousseau (IRMA)
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Complex Variables 复变数
分类描述:Holomorphic functions, automorphic group actions and forms, pseudoconvexity, complex geometry, analytic spaces, analytic sheaves
全纯函数,自守群作用与形式,伪凸性,复几何,解析空间,解析束
--
---
英文摘要:
Motivated by the Green-Griffiths conjecture, we study maximal rank holomorphic maps from $\C^p$ into complex manifolds. When $p>1$ such maps should in principle be more tractable than entire curves. We extend to this setting the jet-bundles techniques introduced by Semple, Green-Griffiths and Demailly. Our main application is the non-existence of maximal rank holomorphic maps from $\C^2$ into the very general degree $d$ hypersurface in $\bP^4$, as soon as $d\geq 93.$
---
PDF链接:
https://arxiv.org/pdf/0810.4911


雷达卡



京公网安备 11010802022788号







