摘要翻译:
在外部服务器上发布私人数据带来了如何避免机密数据不必要的泄露的问题。研究了扩展析取逻辑程序中的一个保密性问题,并给出了如何通过扩展诱拐来解决这个问题。特别地,我们分析了轻信的非单调推理是如何影响机密性的。
---
英文标题:
《Confidentiality-Preserving Data Publishing for Credulous Users by
Extended Abduction》
---
作者:
Katsumi Inoue and Chiaki Sakama and Lena Wiese
---
最新提交年份:
2011
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
Publishing private data on external servers incurs the problem of how to avoid unwanted disclosure of confidential data. We study a problem of confidentiality in extended disjunctive logic programs and show how it can be solved by extended abduction. In particular, we analyze how credulous non-monotonic reasoning affects confidentiality.
---
PDF链接:
https://arxiv.org/pdf/1108.5825


雷达卡



京公网安备 11010802022788号







