摘要翻译:
学习在现实世界领域中自主行动的智能体必须获得他们所操作的领域的动力学模型。学习域动态可能具有挑战性,特别是在代理只能部分访问世界状态和/或有噪声的外部传感器的情况下。即使在标准的STRIPS域中,现有的方法也不能从真实世界域中典型的噪声、不完整的观测中学习。本文提出了一种在这类领域中学习STRIPS行为模型的方法,该方法首先将问题分解为学习一组分类器形式的状态间的转移函数,然后从分类器的参数导出显式STRIPS规则。我们在国际规划竞赛的模拟标准规划域上评估了我们的方法,并表明它从噪声、不完整的观测中学习有用的领域描述。
---
英文标题:
《Learning STRIPS Operators from Noisy and Incomplete Observations》
---
作者:
Kira Mourao, Luke S. Zettlemoyer, Ronald P. A. Petrick, Mark Steedman
---
最新提交年份:
2012
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Machine Learning 机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Statistics 统计学
二级分类:Machine Learning 机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
---
英文摘要:
Agents learning to act autonomously in real-world domains must acquire a model of the dynamics of the domain in which they operate. Learning domain dynamics can be challenging, especially where an agent only has partial access to the world state, and/or noisy external sensors. Even in standard STRIPS domains, existing approaches cannot learn from noisy, incomplete observations typical of real-world domains. We propose a method which learns STRIPS action models in such domains, by decomposing the problem into first learning a transition function between states in the form of a set of classifiers, and then deriving explicit STRIPS rules from the classifiers' parameters. We evaluate our approach on simulated standard planning domains from the International Planning Competition, and show that it learns useful domain descriptions from noisy, incomplete observations.
---
PDF链接:
https://arxiv.org/pdf/1210.4889


雷达卡



京公网安备 11010802022788号







