楼主: mingdashike22
327 0

[数学] 完全非负旗形变量的离散Morse理论 [推广有奖]

  • 0关注
  • 3粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
73.8816
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
24862 点
帖子
4109
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
mingdashike22 在职认证  发表于 2022-4-5 11:10:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
在1994年的一篇开创性论文中,Lusztig通过引入任意(广义的,部分的)标志簇G/P的全非负部分(G/P)_{\geq0}来推广全正性理论。他把这个空间称为“非凡的多面体子空间”,并推测分解成细胞,这随后被第一作者证明。随后,第二作者通过猜想这个单元分解空间是一个与闭球同胚的正则CW复形,提出了一个具体的猜想,即这个单元分解空间是一个多面体的次优空间。本文利用离散Morse理论证明了该猜想的同伦等价性。我们明确地证明了胞的边界与球面同伦,胞的闭包是可收缩的。后半部分推广了Lusztig的一个结果:(G/P)_{\geq0}--上维单元的闭包--是可收缩的。对于除射影空间外的所有G/P空间,我们关于胞体边界的结果,即使是顶维胞体(G/P)_{>0}的边界与球面同伦的特例,也是新的。
---
英文标题:
《Discrete Morse theory for totally non-negative flag varieties》
---
作者:
Konstanze Rietsch and Lauren Williams
---
最新提交年份:
2010
---
分类信息:

一级分类:Mathematics        数学
二级分类:Combinatorics        组合学
分类描述:Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
离散数学,图论,计数,组合优化,拉姆齐理论,组合对策论
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics        数学
二级分类:Representation Theory        表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--

---
英文摘要:
  In a seminal 1994 paper, Lusztig extended the theory of total positivity by introducing the totally non-negative part (G/P)_{\geq 0} of an arbitrary (generalized, partial) flag variety G/P. He referred to this space as a "remarkable polyhedral subspace", and conjectured a decomposition into cells, which was subsequently proven by the first author. Subsequently the second author made the concrete conjecture that this cell decomposed space is the next best thing to a polyhedron, by conjecturing it to be a regular CW complex that is homeomorphic to a closed ball. In this article we use discrete Morse theory to prove this conjecture up to homotopy-equivalence. Explicitly, we prove that the boundaries of the cells are homotopic to spheres, and the closures of cells are contractible. The latter part generalizes a result of Lusztig's that (G/P)_{\geq 0} -- the closure of the top-dimensional cell -- is contractible. Concerning our result on the boundaries of cells, even the special case that the boundary of the top-dimensional cell (G/P)_{> 0} is homotopic to a sphere, is new for all G/P other than projective space.
---
PDF链接:
https://arxiv.org/pdf/0810.4314
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:ORS Presentation Optimization mathematics Dimensional totally 推测 1994 边界 author

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-29 04:32