摘要翻译:
当样本容量较大时,我们得到了有限总体均值的分层Bayes估计的一个极限。极限是在普通微积分的意义上,其中样本观察被视为固定的量。我们的结果提出了一种简单的方法来修正分层Bayes估计,以实现设计一致性,这是有限总体抽样的传统随机化方法中的一个众所周知的性质。我们还提出了三种不同的不确定度的估计量。
---
英文标题:
《On the design-consistency property of hierarchical Bayes estimators in
finite population sampling》
---
作者:
P. Lahiri, Kanchan Mukherjee
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
We obtain a limit of a hierarchical Bayes estimator of a finite population mean when the sample size is large. The limit is in the sense of ordinary calculus, where the sample observations are treated as fixed quantities. Our result suggests a simple way to correct the hierarchical Bayes estimator to achieve design-consistency, a well-known property in the traditional randomization approach to finite population sampling. We also suggest three different measures of uncertainty of our proposed estimator.
---
PDF链接:
https://arxiv.org/pdf/708.189


雷达卡



京公网安备 11010802022788号







