摘要翻译:
我们考虑一个经济,其中代理人的消费集由非负可测函数的锥$\Mathbf{L}^0_+$给出,其偏好由满足Inada条件的加性效用定义。我们将\Citet{Dana:93}中关于Arrow-Debreu平衡点的存在唯一性的结果推广到这个设置。在存在的情况下,我们的条件是必要和充分的。
---
英文标题:
《Existence and uniqueness of Arrow-Debreu equilibria with consumptions in
$\mathbf{L}^0_+$》
---
作者:
Dmitry Kramkov
---
最新提交年份:
2013
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:General Finance 一般财务
分类描述:Development of general quantitative methodologies with applications in finance
通用定量方法的发展及其在金融中的应用
--
一级分类:Quantitative Finance 数量金融学
二级分类:Portfolio Management 项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--
---
英文摘要:
We consider an economy where agents' consumption sets are given by the cone $\mathbf{L}^0_+$ of non-negative measurable functions and whose preferences are defined by additive utilities satisfying the Inada conditions. We extend to this setting the results in \citet{Dana:93} on the existence and uniqueness of Arrow-Debreu equilibria. In the case of existence, our conditions are necessary and sufficient.
---
PDF链接:
https://arxiv.org/pdf/1304.3284


雷达卡



京公网安备 11010802022788号







