摘要翻译:
负载均衡是计算机网络中的一个重要问题,它能有效地利用网络资源。为了实现一个均衡的网络,需要在源和目的地之间找到不同的路由。在本文中,我们提出了一种利用群体智能技术和多群体算法来寻找不同路径的新方法。该算法是MACO算法的一个改进版本,我们使用不同的蚁群和蜜蜂群成员作为智能代理来监控网络并更新路由信息。该调查包括对MACO的比较和批评。仿真结果表明,该方法有明显的改进。
---
英文标题:
《Multiple ant-bee colony optimization for load balancing in
packet-switched networks》
---
作者:
Mehdi Kashefikia, Nasser Nematbakhsh, Reza Askari Moghadam
---
最新提交年份:
2011
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Networking and Internet Architecture 网络和因特网体系结构
分类描述:Covers all aspects of computer communication networks, including network architecture and design, network protocols, and internetwork standards (like TCP/IP). Also includes topics, such as web caching, that are directly relevant to Internet architecture and performance. Roughly includes all of ACM Subject Class C.2 except C.2.4, which is more likely to have Distributed, Parallel, and Cluster Computing as the primary subject area.
涵盖计算机通信网络的所有方面,包括网络体系结构和设计、网络协议和网络间标准(如TCP/IP)。还包括与Internet体系结构和性能直接相关的主题,如web缓存。大致包括除C.2.4以外的所有ACM主题类C.2,后者更有可能将分布式、并行和集群计算作为主要主题领域。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
One of the important issues in computer networks is "Load Balancing" which leads to efficient use of the network resources. To achieve a balanced network it is necessary to find different routes between the source and destination. In the current paper we propose a new approach to find different routes using swarm intelligence techniques and multi colony algorithms. In the proposed algorithm that is an improved version of MACO algorithm, we use different colonies of ants and bees and appoint these colony members as intelligent agents to monitor the network and update the routing information. The survey includes comparison and critiques of MACO. The simulation results show a tangible improvement in the aforementioned approach.
---
PDF链接:
https://arxiv.org/pdf/1110.2341


雷达卡



京公网安备 11010802022788号







