摘要翻译:
我们描述了一种基于谱密度函数正则分解的空间数据(非参数)预测算法。我们给出的理论结果表明,该预测器具有理想的渐近性质。在蒙特卡罗研究中评估了有限样本的性能,并将我们的算法与基于数据动力学的无限AR表示的竞争对手非参数方法进行了比较。最后,我们应用我们的方法对洛杉矶的房价进行预测。
---
英文标题:
《Nonparametric prediction with spatial data》
---
作者:
Abhimanyu Gupta and Javier Hidalgo
---
最新提交年份:
2021
---
分类信息:
一级分类:Economics 经济学
二级分类:Econometrics 计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
---
英文摘要:
We describe a (nonparametric) prediction algorithm for spatial data, based on a canonical factorization of the spectral density function. We provide theoretical results showing that the predictor has desirable asymptotic properties. Finite sample performance is assessed in a Monte Carlo study that also compares our algorithm to a rival nonparametric method based on the infinite AR representation of the dynamics of the data. Finally, we apply our methodology to predict house prices in Los Angeles.
---
PDF链接:
https://arxiv.org/pdf/2008.04269


雷达卡



京公网安备 11010802022788号







