摘要翻译:
给出了一个辛的三重$(M,\omega)$,对于一个与$\omega$兼容的泛型几乎复结构$j$,在$\H_2(M,\z)$与$c_1(M)的任何属$g\geq0$中的$M$中存在有限多个代表同调类$\beta$的$j$-全纯曲线。\beta=0$,条件是$\beta$的可除性至多为4(即如果$\beta=n\alpha$与$\alpha\在H_2(M,\z)$和$n\in\z$,则$n\leq4$)。此外,每一个这样的曲线是嵌入和4-刚性的。
---
英文标题:
《On finiteness and rigidity of J-holomorphic curves in symplectic
three-folds》
---
作者:
Eaman Eftekhary
---
最新提交年份:
2012
---
分类信息:
一级分类:Mathematics 数学
二级分类:Symplectic Geometry 辛几何
分类描述:Hamiltonian systems, symplectic flows, classical integrable systems
哈密顿系统,辛流,经典可积系统
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Given a symplectic three-fold $(M,\omega)$ we show that for a generic almost complex structure $J$ which is compatible with $\omega$, there are finitely many $J$-holomorphic curves in $M$ of any genus $g\geq 0$ representing a homology class $\beta$ in $\H_2(M,\Z)$ with $c_1(M).\beta=0$, provided that the divisibility of $\beta$ is at most 4 (i.e. if $\beta=n\alpha$ with $\alpha\in H_2(M,\Z)$ and $n\in \Z$ then $n\leq 4$). Moreover, each such curve is embedded and 4-rigid.
---
PDF链接:
https://arxiv.org/pdf/0810.1640


雷达卡



京公网安备 11010802022788号







