摘要翻译:
本文对文[15]中开始的带跳跃的二阶BSDEs(简称2BSDEJs)进行了研究。我们用直接方法证明了这些方程的存在性,从而给出了2BSDEJS的完全适定性。这些方程是一些完全非线性偏积分微分方程的概率解释的自然候选,这是本文第二部分工作的重点。我们证明了一个非线性Feynman-Kac公式,并证明了2BSDEJS的解提供了相关PIDE的粘度解。
---
英文标题:
《Second Order BSDEs with Jumps: Existence and probabilistic
representation for fully-nonlinear PIDEs》
---
作者:
M. Nabil Kazi-Tani, Dylan Possama\"i, Chao Zhou
---
最新提交年份:
2014
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Portfolio Management 项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
---
英文摘要:
In this paper, we pursue the study of second order BSDEs with jumps (2BSDEJs for short) started in our accompanying paper [15]. We prove existence of these equations by a direct method, thus providing complete wellposedness for 2BSDEJs. These equations are a natural candidate for the probabilistic interpretation of some fully non-linear partial integro-differential equations, which is the point of the second part of this work. We prove a non-linear Feynman-Kac formula and show that solutions to 2BSDEJs provide viscosity solutions of the associated PIDEs.
---
PDF链接:
https://arxiv.org/pdf/1208.0763


雷达卡



京公网安备 11010802022788号







