摘要翻译:
我们考察了代数几何中的定向上同调和Borel-Moore同调理论的各种版本,并将这两个理论放在一个“定向对偶理论”的背景下,该理论是Bloch-Ogus扭曲对偶理论的推广。这结合和突出了帕宁和莫卡纳苏的工作。我们利用这一点给出了Voevodsky的$mgl^{*,*}$-理论的一个Borel-Moore同调版本$mgl′_{*,*}$,以及一个自然映射$\vartheta:\omega_*\到mgl′_{2*,*}$,其中$\omega_*$是Levine-Morel定义的代数共边理论。我们猜想$\vartheta$是一个同构,并描述了一个证明该猜想的程序。
---
英文标题:
《Oriented cohomology, Borel-Moore homology and algebraic cobordism》
---
作者:
Marc Levine
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:K-Theory and Homology K-理论与同调
分类描述:Algebraic and topological K-theory, relations with topology, commutative algebra, and operator algebras
代数和拓扑K-理论,与拓扑的关系,交换代数和算子代数
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We examine various versions of oriented cohomology and Borel-Moore homology theories in algebraic geometry and put these two together in the setting of an "oriented duality theory", a generalization of Bloch-Ogus twisted duality theory. This combines and exends work of Panin and Mocanasu. We apply this to give a Borel-Moore homology version $MGL'_{*,*}$ of Voevodsky's $MGL^{*,*}$-theory, and a natural map $\vartheta:\Omega_*\to MGL'_{2*,*}$, where $\Omega_*$ is the algebraic cobordism theory defined by Levine-Morel. We conjecture that $\vartheta$ is an isomorphism and describe a program for proving this conjecture.
---
PDF链接:
https://arxiv.org/pdf/0807.2257


雷达卡



京公网安备 11010802022788号







