摘要翻译:
利用SIFT检测器得到的旋转不变特征的五个对应关系,在两个视图中估计基本矩阵。提出的最小求解器首先从三个对应项估计单应性,假设它们是共面的,并利用它们的旋转分量。然后由单应性和一般位置上的两个附加点对得到基本矩阵。该方法与图割RANSAC等稳健估计器相结合,在精度和所需迭代次数方面都优于其他现有算法。这是在合成数据和$561$真实图像对上验证的。此外,试验表明,在城市环境中,要求在一个平面上有三个点并没有太大的限制,即使点不完全共面,局部优化的稳健估计也能得到准确的估计。作为一个潜在的应用,我们证明了使用所提出的方法可以提高两视多运动估计的准确性。
---
英文标题:
《Five-point Fundamental Matrix Estimation for Uncalibrated Cameras》
---
作者:
Daniel Barath
---
最新提交年份:
2018
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Computer Vision and Pattern Recognition 计算机视觉与模式识别
分类描述:Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.
涵盖图像处理、计算机视觉、模式识别和场景理解。大致包括ACM课程I.2.10、I.4和I.5中的材料。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Image and Video Processing 图像和视频处理
分类描述:Theory, algorithms, and architectures for the formation, capture, processing, communication, analysis, and display of images, video, and multidimensional signals in a wide variety of applications. Topics of interest include: mathematical, statistical, and perceptual image and video modeling and representation; linear and nonlinear filtering, de-blurring, enhancement, restoration, and reconstruction from degraded, low-resolution or tomographic data; lossless and lossy compression and coding; segmentation, alignment, and recognition; image rendering, visualization, and printing; computational imaging, including ultrasound, tomographic and magnetic resonance imaging; and image and video analysis, synthesis, storage, search and retrieval.
用于图像、视频和多维信号的形成、捕获、处理、通信、分析和显示的理论、算法和体系结构。感兴趣的主题包括:数学,统计,和感知图像和视频建模和表示;线性和非线性滤波、去模糊、增强、恢复和重建退化、低分辨率或层析数据;无损和有损压缩编码;分割、对齐和识别;图像渲染、可视化和打印;计算成像,包括超声、断层和磁共振成像;以及图像和视频的分析、合成、存储、搜索和检索。
--
---
英文摘要:
We aim at estimating the fundamental matrix in two views from five correspondences of rotation invariant features obtained by e.g.\ the SIFT detector. The proposed minimal solver first estimates a homography from three correspondences assuming that they are co-planar and exploiting their rotational components. Then the fundamental matrix is obtained from the homography and two additional point pairs in general position. The proposed approach, combined with robust estimators like Graph-Cut RANSAC, is superior to other state-of-the-art algorithms both in terms of accuracy and number of iterations required. This is validated on synthesized data and $561$ real image pairs. Moreover, the tests show that requiring three points on a plane is not too restrictive in urban environment and locally optimized robust estimators lead to accurate estimates even if the points are not entirely co-planar. As a potential application, we show that using the proposed method makes two-view multi-motion estimation more accurate.
---
PDF链接:
https://arxiv.org/pdf/1803.0026


雷达卡



京公网安备 11010802022788号







