摘要翻译:
设k是不同于2的特征域。对于k上不可分解的主极化阿贝尔三重(A,A)是k上的雅可比,可能存在一个障碍。它可以根据某种Siegel模形式的值的平方根的合理性来计算。我们给出了如何显式地对主极化阿贝尔三次幂做这一点,这三次幂是椭圆曲线的三次方复乘。我们用数值结果证明或反驳了亏格3的某些最优曲线的存在性。
---
英文标题:
《Explicit computations of Serre's obstruction for genus 3 curves and
application to optimal curves》
---
作者:
Christophe Ritzenthaler
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let k be a field of characteristic different from 2. There can be an obstruction for an indecomposable principally polarized abelian threefold (A,a) over k to be a Jacobian over k. It can be computed in terms of the rationality of the square root of the value of a certain Siegel modular form. We show how to do this explicitly for principally polarized abelian threefolds which are the third power of an elliptic curve with complex multiplication. We use our numeric results to prove or refute the existence of some optimal curves of genus 3.
---
PDF链接:
https://arxiv.org/pdf/0901.2920


雷达卡



京公网安备 11010802022788号







