在实验设计中限制随机化(例如,使用阻断/分层、成对匹配或重随机化)可以改善重要协变量的治疗-对照平衡,从而改善对治疗效果的估计,特别是对于中小型实验。关于如何识别这些变量和实施限制的现有指导是不完整和相互冲突的。我们发现差异主要是由于治疗前数据中的重要内容可能无法转化为治疗后数据。我们强调有足够的数据来提供明确指导的设置,并概述使用现代机器学习(ML)技术实现过程自动化的改进方法。我们用实际数据进行了仿真,结果表明,这些方法既减小了估计的均方误差(14%-34%),又减小了标准误差(6%-16%)。
---
英文标题:
《Machine Learning for Experimental Design: Methods for Improved Blocking》
---
作者:
Brian Quistorff and Gentry Johnson
---
最新提交年份:
2020
---
分类信息:
一级分类:Economics 经济学
二级分类:Econometrics 计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
---
英文摘要:
Restricting randomization in the design of experiments (e.g., using blocking/stratification, pair-wise matching, or rerandomization) can improve the treatment-control balance on important covariates and therefore improve the estimation of the treatment effect, particularly for small- and medium-sized experiments. Existing guidance on how to identify these variables and implement the restrictions is incomplete and conflicting. We identify that differences are mainly due to the fact that what is important in the pre-treatment data may not translate to the post-treatment data. We highlight settings where there is sufficient data to provide clear guidance and outline improved methods to mostly automate the process using modern machine learning (ML) techniques. We show in simulations using real-world data, that these methods reduce both the mean squared error of the estimate (14%-34%) and the size of the standard error (6%-16%).
---
PDF下载:
-->
English_Paper.pdf
(491.88 KB)


雷达卡



京公网安备 11010802022788号







