摘要翻译:
最近利用城市级别时间序列的研究表明,在新冠肺炎遏制政策出台后,世界各地的几起犯罪有所下降。利用芝加哥社区一级的数据,这项工作旨在促进我们对公共干预如何在更细的空间尺度上影响犯罪活动的理解。该分析依赖于一个两步的方法。首先,它通过四个犯罪类别(即入室盗窃、袭击、与毒品有关的犯罪和抢劫)的结构性贝叶斯时间序列,估计了芝加哥采取的社交距离和就地避难所政策在社区范围内的因果影响。一旦模型检测到趋势变化的方向、幅度和意义,Firth的Logistic回归被用来调查与在分析的第一步中发现的统计上显著的犯罪减少相关的因素。统计结果首先表明,犯罪趋势的变化因社区和犯罪类型而异。这表明,除了总体模型的结果之外,还有一幅以不同模式为特征的复杂图景。第二,回归模型提供了与显著减少犯罪有关的相关因素的混合结果:几种关系在犯罪方面具有相反的方向,人口是唯一与显著减少犯罪稳定和正相关的因素。
---
英文标题:
《Disentangling Community-level Changes in Crime Trends During the
COVID-19 Pandemic in Chicago》
---
作者:
Gian Maria Campedelli, Serena Favarin, Alberto Aziani, Alex R. Piquero
---
最新提交年份:
2020
---
分类信息:
一级分类:Economics 经济学
二级分类:General Economics 一般经济学
分类描述:General methodological, applied, and empirical contributions to economics.
对经济学的一般方法、应用和经验贡献。
--
一级分类:Physics 物理学
二级分类:Physics and Society 物理学与社会
分类描述:Structure, dynamics and collective behavior of societies and groups (human or otherwise). Quantitative analysis of social networks and other complex networks. Physics and engineering of infrastructure and systems of broad societal impact (e.g., energy grids, transportation networks).
社会和团体(人类或其他)的结构、动态和集体行为。社会网络和其他复杂网络的定量分析。具有广泛社会影响的基础设施和系统(如能源网、运输网络)的物理和工程。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Economics 经济学
分类描述:q-fin.EC is an alias for econ.GN. Economics, including micro and macro economics, international economics, theory of the firm, labor economics, and other economic topics outside finance
q-fin.ec是econ.gn的别名。经济学,包括微观和宏观经济学、国际经济学、企业理论、劳动经济学和其他金融以外的经济专题
--
一级分类:Statistics 统计学
二级分类:Applications 应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
---
英文摘要:
Recent studies exploiting city-level time series have shown that, around the world, several crimes declined after COVID-19 containment policies have been put in place. Using data at the community-level in Chicago, this work aims to advance our understanding on how public interventions affected criminal activities at a finer spatial scale. The analysis relies on a two-step methodology. First, it estimates the community-wise causal impact of social distancing and shelter-in-place policies adopted in Chicago via Structural Bayesian Time-Series across four crime categories (i.e., burglary, assault, narcotics-related offenses, and robbery). Once the models detected the direction, magnitude and significance of the trend changes, Firth\'s Logistic Regression is used to investigate the factors associated to the statistically significant crime reduction found in the first step of the analyses. Statistical results first show that changes in crime trends differ across communities and crime types. This suggests that beyond the results of aggregate models lies a complex picture characterized by diverging patterns. Second, regression models provide mixed findings regarding the correlates associated with significant crime reduction: several relations have opposite directions across crimes with population being the only factor that is stably and positively associated with significant crime reduction.
---
PDF下载:
-->


雷达卡



京公网安备 11010802022788号







