作者:俊欣
来源:关于数据分析与可视化
今天我们继续来讲一下Pandas和SQL之间的联用,我们其实也可以在Pandas当中使用SQL语句来筛选数据,通过Pandasql模块来实现该想法,首先我们来安装一下该模块
pip install pandasql要是你目前正在使用jupyter notebook,也可以这么来下载
!pip install pandasql 导入数据我们首先导入数据
- import pandas as pd from pandasql import sqldf
- df = pd.read_csv("Dummy_Sales_Data_v1.csv", sep=",")
- df.head()
output
SQL来查询数据,效率超高" class="syl-page-img" style="border: none; margin-top: 20px; max-width: 715px; height: auto;">我们先对导入的数据集做一个初步的探索性分析,
df.info()output
- <class 'pandas.core.frame.DataFrame'> RangeIndex: 9999 entries, 0 to 9998 Data columns (total 12 columns):
- # Column Non-Null Count Dtype
- --- ------ -------------- ----- 0 OrderID 9999 non-null int64 1 Quantity 9999 non-null int64 2 UnitPrice(USD) 9999 non-null int64 3 Status 9999 non-null object 4 OrderDate 9999 non-null object 5 Product_Category 9963 non-null object 6 Sales_Manager 9999 non-null object 7 Shipping_Cost(USD) 9999 non-null int64 8 Delivery_Time(Days) 9948 non-null float64 9 Shipping_Address 9999 non-null object 10 Product_Code 9999 non-null object 11 OrderCode 9999 non-null int64
- dtypes: float64(1), int64(5), object(6)
- memory usage: 937.5+ KB
再开始进一步的数据筛选之前,我们再对数据集的列名做一个转换,代码如下
- df.rename(columns={"Shipping_Cost(USD)":"ShippingCost_USD", "UnitPrice(USD)":"UnitPrice_USD", "Delivery_Time(Days)":"Delivery_Time_Days"},
- inplace=True)
- df.info()
- output
- <class 'pandas.core.frame.DataFrame'> RangeIndex: 9999 entries, 0 to 9998 Data columns (total 12 columns):
- # Column Non-Null Count Dtype
- --- ------ -------------- ----- 0 OrderID 9999 non-null int64 1 Quantity 9999 non-null int64 2 UnitPrice_USD 9999 non-null int64 3 Status 9999 non-null object 4 OrderDate 9999 non-null object 5 Product_Category 9963 non-null object 6 Sales_Manager 9999 non-null object 7 ShippingCost_USD 9999 non-null int64 8 Delivery_Time_Days 9948 non-null float64 9 Shipping_Address 9999 non-null object 10 Product_Code 9999 non-null object 11 OrderCode 9999 non-null int64
- dtypes: float64(1), int64(5), object(6)
- memory usage: 937.5+ KB
用SQL筛选出若干列来
我们先尝试筛选出OrderID、Quantity、Sales_Manager、Status等若干列数据,用SQL语句应该是这么来写的
SELECT OrderID, Quantity, Sales_Manager, Status, Shipping_Address, ShippingCost_USD FROM df与Pandas模块联用的时候就这么来写
query = "SELECT OrderID, Quantity, Sales_Manager,Status, Shipping_Address, ShippingCost_USD FROM df" df_orders = sqldf(query) df_orders.head()output
SQL来查询数据,效率超高" class="syl-page-img" style="border: none; margin-top: 20px; max-width: 715px; height: auto;">SQL中带WHERE条件筛选
我们在SQL语句当中添加指定的条件进而来筛选数据,代码如下
query = "SELECT * FROM df_orders WHERE Shipping_Address = 'Kenya'" df_kenya = sqldf(query) df_kenya.head()output
SQL来查询数据,效率超高" class="syl-page-img" style="border: none; margin-top: 20px; max-width: 715px; height: auto;">而要是条件不止一个,则用AND来连接各个条件,代码如下
query = "SELECT * FROM df_orders WHERE Shipping_Address = 'Kenya' AND Quantity < 40 AND Status IN ('Shipped', 'Delivered')"df_kenya = sqldf(query)df_kenya.head()output
SQL来查询数据,效率超高" class="syl-page-img" style="border: none; margin-top: 20px; max-width: 715px; height: auto;">分组
同理我们可以调用SQL当中的GROUP BY来对筛选出来的数据进行分组,代码如下
query = "SELECT Shipping_Address, COUNT(OrderID) AS Orders FROM df_orders GROUP BY Shipping_Address"df_group = sqldf(query)df_group.head(10)output
SQL来查询数据,效率超高" class="syl-page-img" style="border: none; margin-top: 20px; max-width: 715px; height: auto;">排序
而排序在SQL当中则是用ORDER BY,代码如下
query = "SELECT Shipping_Address, COUNT(OrderID) AS Orders FROM df_orders GROUP BY Shipping_Address ORDER BY Orders"df_group = sqldf(query)df_group.head(10)output
SQL来查询数据,效率超高" class="syl-page-img" style="border: none; margin-top: 20px; max-width: 715px; height: auto;">数据合并
我们先创建一个数据集,用于后面两个数据集之间的合并,代码如下
query = "SELECT OrderID, Quantity, Product_Code, Product_Category, UnitPrice_USD FROM df" df_products = sqldf(query) df_products.head()output
SQL来查询数据,效率超高" class="syl-page-img" style="border: none; margin-top: 20px; max-width: 715px; height: auto;">我们这里采用的两个数据集之间的交集,因此是INNER JOIN,代码如下
query = "SELECT T1.OrderID, T1.Shipping_Address, T2.Product_Category FROM df_orders T1 INNER JOIN df_products T2 ON T1.OrderID = T2.OrderID" df_combined = sqldf(query) df_combined.head()output
SQL来查询数据,效率超高" class="syl-page-img" style="border: none; margin-top: 20px; max-width: 715px; height: auto;">与LIMIT之间的联用
在SQL当中的LIMIT是用于限制查询结果返回的数量的,我们想看查询结果的前10个,代码如下
query = "SELECT OrderID, Quantity, Sales_Manager, Status, Shipping_Address, ShippingCost_USD FROM df LIMIT 10"df_orders_limit = sqldf(query)df_orders_limitoutput
SQL来查询数据,效率超高" class="syl-page-img" style="border: none; margin-top: 20px; max-width: 715px; height: auto;"> 相关帖子DA内容精选
|


雷达卡





京公网安备 11010802022788号







