|
产品增长红利过程为:AP(k,w)g,v(t,s)=A(k)g,v(t)·A(w)g(t),B(t)(s)=TN(0)+1-1Yj=1gk·JkN(0)+1·A(k)JN(0)+1,0(t- TN(0)+1)·A(w)G(t-TN(0)+1,B(t)-总氮(0)+1(s)- TN(0)+1)=gk(TN(0)+1-1) JkN(0)+1.AP(k,w)JN(0)+1,0(t- TN(0)+1,s- TN(0)+1)。(4.10)可以考虑条件事件{JN(0)+1的概率来计算(4.10)的期望值∈ (y,y+dy),TN(0)+1=θ≤ t | JN(0)=g,TN(0)=-v、 TN(0)>0}与˙q(g,y,θ+v)dy1重合-H(g,v)和随机变量AP(k,w)JN(0)+1,0(t-TN(0)+1,s-TN(0)+1)独立于联合随机变量(JN(0)+1,TN(0)+1),因此E[A(k,w)g,v(t,s)1{TN(0)+1≤t} ]=tXθ=1ZE˙q(g,y,θ+v)1- H(g,v)(g)k(θ)-1) ykM(k,w)y,0(t- θ、 s- θ) dy.(4.11)将(4.4)、(4.9)和(4.11)替换为(4.1)得出结论。关于任意序列{a(t)}t的推论(3.4)的约定证明∈我们得到qtj=t+1a(t)=1。k的产品增长红利过程∈ {1,2},w=1和s=t isAP(k,1)g,v(t,t)=A(k)g,v(t)·A(1)g(t),B(t)(t)。根据定义(3.1),我们有a(1)G(t),B(t)(t;ω)=Qtj=t+1G(j;ω)=1如果ω∈ Ohm否则,(4.12)则AP(k,1)G,v(t,t)=A(k)G,v(t)和E[AP(k,1)G,v(t,t)]=E[A(k)G,v(t)]。
|