楼主: 何人来此
232 0

[量化金融] 市场冲击博弈中纳什均衡的高频极限 [推广有奖]

  • 0关注
  • 4粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
64.8012
学术水平
1 点
热心指数
6 点
信用等级
0 点
经验
24593 点
帖子
4128
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
何人来此 在职认证  发表于 2022-5-11 17:52:50 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
英文标题:
《High-frequency limit of Nash equilibria in a market impact game with
  transient price impact》
---
作者:
Alexander Schied, Elias Strehle, and Tao Zhang
---
最新提交年份:
2017
---
英文摘要:
  We study the high-frequency limits of strategies and costs in a Nash equilibrium for two agents that are competing to minimize liquidation costs in a discrete-time market impact model with exponentially decaying price impact and quadratic transaction costs of size $\\theta\\ge0$. We show that, for $\\theta=0$, equilibrium strategies and costs will oscillate indefinitely between two accumulation points. For $\\theta>0$, however, strategies, costs, and total transaction costs will converge towards limits that are independent of $\\theta$. We then show that the limiting strategies form a Nash equilibrium for a continuous-time version of the model with $\\theta$ equal to a certain critical value $\\theta^*>0$, and that the corresponding expected costs coincide with the high-frequency limits of the discrete-time equilibrium costs. For $\\theta\\neq\\theta^*$, however, continuous-time Nash equilibria will typically not exist. Our results permit us to give mathematically rigorous proofs of numerical observations made in Schied and Zhang (2013). In particular, we provide a range of model parameters for which the limiting expected costs of both agents are decreasing functions of $\\theta$. That is, for sufficiently high trading speed, raising additional transaction costs can reduce the expected costs of all agents.
---
中文摘要:
我们研究了在价格影响呈指数衰减且交易成本为$\\theta\\ge0$的离散时间市场影响模型中,两个代理竞争最小化清算成本的纳什均衡中策略和成本的高频极限。我们证明,当$\\theta=0$时,均衡策略和成本将在两个累积点之间无限振荡。然而,当$\\theta>0$时,策略、成本和总交易成本将趋于独立于$\\theta$的限制。然后,我们证明,对于$\\theta$等于某个临界值$\\theta^*>0$的连续时间模型,限制策略形成了一个纳什均衡,并且相应的预期成本与离散时间均衡成本的高频极限一致。然而,对于$\\theta\\neq\\theta^*$,通常不存在连续时间纳什均衡。我们的结果允许我们对Schied和Zhang(2013)的数值观测给出严格的数学证明。特别是,我们提供了一系列模型参数,对于这些参数,两个代理的极限预期成本都是$\\theta$的递减函数。也就是说,对于足够高的交易速度,提高额外的交易成本可以降低所有代理的预期成本。
---
分类信息:

一级分类:Quantitative Finance        数量金融学
二级分类:Trading and Market Microstructure        交易与市场微观结构
分类描述:Market microstructure, liquidity, exchange and auction design, automated trading, agent-based modeling and market-making
市场微观结构,流动性,交易和拍卖设计,自动化交易,基于代理的建模和做市
--
一级分类:Quantitative Finance        数量金融学
二级分类:Mathematical Finance        数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--

---
PDF下载:
-->
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:纳什均衡 Mathematical Quantitative observations accumulation

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-2 15:54