《Lie Symmetry Analysis of the Black-Scholes-Merton Model for European
Options with Stochastic Volatility》
---
作者:
A. Paliathanasis, K. Krishnakumar, K.M. Tamizhmani and P.G.L. Leach
---
最新提交年份:
2016
---
英文摘要:
We perform a classification of the Lie point symmetries for the Black--Scholes--Merton Model for European options with stochastic volatility, $\\sigma$, in which the last is defined by a stochastic differential equation with an Orstein--Uhlenbeck term. In this model, the value of the option is given by a linear (1 + 2) evolution partial differential equation in which the price of the option depends upon two independent variables, the value of the underlying asset, $S$, and a new variable, $y$. We find that for arbitrary functional form of the volatility, $\\sigma(y)$, the (1 + 2) evolution equation always admits two Lie point symmetries in addition to the automatic linear symmetry and the infinite number of solution symmetries. However, when $\\sigma(y)=\\sigma_{0}$ and as the price of the option depends upon the second Brownian motion in which the volatility is defined, the (1 + 2) evolution is not reduced to the Black--Scholes--Merton Equation, the model admits five Lie point symmetries in addition to the linear symmetry and the infinite number of solution symmetries. We apply the zeroth-order invariants of the Lie symmetries and we reduce the (1 + 2) evolution equation to a linear second-order ordinary differential equation. Finally, we study two models of special interest, the Heston model and the Stein--Stein model.
---
中文摘要:
我们对随机波动率为$\\sigma$的欧式期权的Black-Scholes-Merton模型的Lie点对称性进行了分类,其中最后一个由一个带有Orstein-Uhlenbeck项的随机微分方程定义。在该模型中,期权的价值由一个线性(1+2)演化偏微分方程给出,其中期权的价格取决于两个独立变量,即标的资产的价值,$S$,和一个新变量,$y$。我们发现,对于波动率的任意函数形式,$\\sigma(y)$,除了自动线性对称和无穷多解对称外,(1+2)演化方程总是允许两个谎言点对称。然而,当$\\sigma(y)=\\sigma_{0}$且期权价格取决于定义波动率的第二布朗运动时,(1+2)演化并没有简化为Black--Scholes--Merton方程,该模型除了线性对称和无穷多个解对称外,还允许五个谎言点对称。我们利用李对称的零阶不变量,将(1+2)演化方程化为线性二阶常微分方程。最后,我们研究了两个特别有趣的模型,赫斯顿模型和斯坦-斯坦模型。
---
分类信息:
一级分类:Mathematics 数学
二级分类:Analysis of PDEs 偏微分方程分析
分类描述:Existence and uniqueness, boundary conditions, linear and non-linear operators, stability, soliton theory, integrable PDE\'s, conservation laws, qualitative dynamics
存在唯一性,边界条件,线性和非线性算子,稳定性,孤子理论,可积偏微分方程,守恒律,定性动力学
--
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
---
PDF下载:
-->