《Stochastic Tail Exponent For Asymmetric Power Laws》
---
作者:
Nassim Nicholas Taleb
---
最新提交年份:
2017
---
英文摘要:
We examine random variables in the power law/regularly varying class with stochastic tail exponent, the exponent $\\alpha$ having its own distribution. We show the effect of stochasticity of $\\alpha$ on the expectation and higher moments of the random variable. For instance, the moments of a right-tailed or right-asymmetric variable, when finite, increase with the variance of $\\alpha$; those of a left-asymmetric one decreases. The same applies to conditional shortfall (CVar), or mean-excess functions. We prove the general case and examine the specific situation of lognormally distributed $\\alpha \\in [b,\\infty), b>1$. The stochasticity of the exponent induces a significant bias in the estimation of the mean and higher moments in the presence of data uncertainty. This has consequences on sampling error as uncertainty about $\\alpha$ translates into a higher expected mean. The bias is conserved under summation, even upon large enough a number of summands to warrant convergence to the stable distribution. We establish inequalities related to the asymmetry. We also consider the situation of capped power laws (i.e. with compact support), and apply it to the study of violence by Cirillo and Taleb (2016). We show that uncertainty concerning the historical data increases the true mean.
---
中文摘要:
我们用随机尾部指数检验幂律/规则变化类中的随机变量,指数$\\α$有自己的分布。我们展示了$\\α$的随机性对随机变量的期望和高阶矩的影响。例如,右尾或右不对称变量的矩,当有限时,随着$\\α$;左不对称的减少。这同样适用于条件短缺(CVar)或平均超额函数。我们证明了一般情况,并检验了对数正态分布$\\α\\ in的具体情况[b,\\infty),b>1$。指数的随机性导致在存在数据不确定性的情况下,在估计平均值和更高阶矩时产生重大偏差。这会对采样误差产生影响,因为大约$\\alpha$的不确定性会转化为更高的预期平均值。偏差在求和时保持不变,即使求和的数量足够大,以保证收敛到稳定距离分配。我们建立了与不对称性相关的不等式。我们还考虑了上限幂律的情况(即有契约支持),并将其应用于Cirillo和Taleb(2016)的暴力研究。我们表明,历史数据的不确定性增加了真实平均值。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Statistics 统计学
二级分类:Applications 应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
---
PDF下载:
-->
Stochastic_Tail_Exponent_For_Asymmetric_Power_Laws.pdf
(135.78 KB)


雷达卡



京公网安备 11010802022788号







