《Open Source Fundamental Industry Classification》
---
作者:
Zura Kakushadze and Willie Yu
---
最新提交年份:
2017
---
英文摘要:
We provide complete source code for building a fundamental industry classification based on publically available and freely downloadable data. We compare various fundamental industry classifications by running a horserace of short-horizon trading signals (alphas) utilizing open source heterotic risk models (https://ssrn.com/abstract=2600798) built using such industry classifications. Our source code includes various stand-alone and portable modules, e.g., for downloading/parsing web data, etc.
---
中文摘要:
我们提供了完整的源代码,用于基于公开可用和免费下载的数据构建基本的行业分类。我们通过利用开源异质风险模型对短期交易信号(Alpha)进行赛马,比较各种基本行业分类(https://ssrn.com/abstract=2600798)使用此类行业分类构建。我们的源代码包括各种独立和便携式模块,例如用于下载/解析web数据等。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:General Finance 一般财务
分类描述:Development of general quantitative methodologies with applications in finance
通用定量方法的发展及其在金融中的应用
--
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
PDF下载:
-->