《Efficient hedging in Bates model using high-order compact finite
differences》
---
作者:
Bertram D\\\"uring and Alexander Pitkin
---
最新提交年份:
2017
---
英文摘要:
We evaluate the hedging performance of a high-order compact finite difference scheme from [4] for option pricing in Bates model. We compare the scheme\'s hedging performance to standard finite difference methods in different examples. We observe that the new scheme outperforms a standard, second-order central finite difference approximation in all our experiments.
---
中文摘要:
在贝茨模型中,我们评估了一个高阶紧致有限差分格式对期权定价的套期保值性能。在不同的例子中,我们比较了该方案与标准有限差分方法的套期保值性能。我们观察到,在我们的所有实验中,新方案优于标准的二阶中心有限差分近似。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
PDF下载:
-->
Efficient_hedging_in_Bates_model_using_high-order_compact_finite_differences.pdf
(368.74 KB)


雷达卡



京公网安备 11010802022788号







