|
在这些时期,早期和中期融合模型在准确性方面始终优于常规的基于规则的预测和后期融合模型。然而,本研究的样本量相对较小,14种多模式深度学习的财务表现如表3所示。命中率(MSE×10-5) 出口测量。1-3对于KO和SP数据标定非融合多模式融合KO only DNN SP only DNN Late Early IntermediateExpt。1[-1, 1] 0.490 (5.257) 0.499 (5.268) 0.513 (5.26) 0.609 (4.781) 0.599 (4.989)[0, 1] 0.526 (5.284) 0.506 (8.787) 0.514 (6.011) 0.612 (4.630) 0.592 (0.480)[-0.5,0.5]0.519(5.622)0.500(7.590)0.501(5.851)0.607(0.463)0.608(4.820)出口2[-1, 1] 0.505 (5.726) 4.755 (6.199) 0.479 (5.852) 0.613 (4.951) 0.617 (5.091)[0, 1] 0.487 (5.717) 4.755 (6.343) 0.470 (5.917) 0.615 (5.054) 0.587 (5.193)[-0.5,0.5]0.484(5.716)4.755(6.437)0.477(5.933)0.590(4.982)0.648(5.048)出口3[-1, 1] 0.552 (3.895) 0.549 (3.902) 0.549 (3.891) 0.602 (3.601) 0.609 (3.629)[0, 1] 0.464 (4.004) 0.507 (4.558) 0.500 (4.132) 0.619 (3.680) 0.545 (3.890)[-0.5,0.5]0.468(3.991)0.482(4.877)0.496(4.251)0.584(3.676)0.570(3.700)平均值±标准差0.499±0.028 0.496±0.023 0.499±0.024 0.606±0.011 0.597±0.029表4。命中率(MSE×10-5) 出口测量。1-3对于KO和NA数据标度非融合多模式融合KO仅DNN NA仅DNN晚期早期中期Expt。1[-1, 1] 0.490 (5.257) 0.518 (5.290) 0.500 (5.275) 0.598 (4.774) 0.600 (4.586)[0, 1] 0.526 (5.284) 0.500 (6.699) 0.504 (5.571) 0.594 (4.479) 0.596 (0.478)[-0.5,0.5]0.519(5.262)0.509(9.565)0.508(6.351)0.592(0.467)0.605(5.048)出口2[-1, 1] 0.505 (5.726) 0.484 (6.090) 0.482 (5.823) 0.608 (5.218) 0.597 (5.178)[0, 1] 0.487 (5.717) 0.480 (6.061) 0.486 (5.826) 0.597 (5.071) 0.613 (5.122)[-0.5,0.5]0.484(5.716)0.475(6.162)0.475(5.841)0.580(5.196)0.573(5.221)Expt。
|