|
为了测试聚类系数的影响,我们使用方法部分提到的Holme-Kim方法改变了网络的聚类。可以看出,在图2中,改变聚类系数对差距s的大小影响不大。真实网络的另一个特征是其不同的分类结构。分类性是网络的一个重要特征。它是一种度量等级相关性的方法。换言之,它可以确定高阶节点是否优先连接到高阶节点、低阶节点,或者是否没有首选项。因此,我们进行了另一项分析,以检查分类对刺激策略的影响。我们的模拟表明,尤其是聚类、分类可以显著影响HDS和LDS策略之间的差距。当网络中的分类能力增加时,LDS的成本策略保持不变。这是因为HDS策略变得相对便宜,因此,两种策略之间的差距越来越大。对于较大的分类价值,LDS刺激的成本是HDS刺激成本的两倍以上。另一个观察结果是,间隙是饱和的f或大的和小的附加值,见图3。三、 方法伊辛模型由哈密顿量=-J∑嗨,jisisj-∑jhjsj,(6)-0.4-0.3-0.2-0.1 0.1 0.2 0.3组合策略组合图3:组合对不同策略之间差距的影响。HDS和LDS策略的成本差距随着网络的多样性增长而增大。其中Si是ithsite的自旋,J是耦合常数,符号hi,ji表示总和在最近的相邻站点上,Hj表示应用于jthnode的刺激性外部场。为了在图1中找到刺激成本,所有旋转都向下设置。
|