《Evaluating the Performance of Machine Learning Algorithms in Financial
Market Forecasting: A Comprehensive Survey》
---
作者:
Lukas Ryll and Sebastian Seidens
---
最新提交年份:
2019
---
英文摘要:
With increasing competition and pace in the financial markets, robust forecasting methods are becoming more and more valuable to investors. While machine learning algorithms offer a proven way of modeling non-linearities in time series, their advantages against common stochastic models in the domain of financial market prediction are largely based on limited empirical results. The same holds true for determining advantages of certain machine learning architectures against others. This study surveys more than 150 related articles on applying machine learning to financial market forecasting. Based on a comprehensive literature review, we build a table across seven main parameters describing the experiments conducted in these studies. Through listing and classifying different algorithms, we also introduce a simple, standardized syntax for textually representing machine learning algorithms. Based on performance metrics gathered from papers included in the survey, we further conduct rank analyses to assess the comparative performance of different algorithm classes. Our analysis shows that machine learning algorithms tend to outperform most traditional stochastic methods in financial market forecasting. We further find evidence that, on average, recurrent neural networks outperform feed forward neural networks as well as support vector machines which implies the existence of exploitable temporal dependencies in financial time series across multiple asset classes and geographies.
---
中文摘要:
随着金融市场竞争的加剧和步伐的加快,稳健的预测方法对投资者来说越来越有价值。虽然机器学习算法为时间序列中的非线性建模提供了一种行之有效的方法,但它们在金融市场预测领域相对于常见随机模型的优势主要基于有限的经验结果。确定某些机器学习体系结构相对于其他体系结构的优势也是如此。本研究调查了150多篇将机器学习应用于金融市场预测的相关文章。在综合文献回顾的基础上,我们构建了一个包含七个主要参数的表格,描述了这些研究中进行的实验。通过列出和分类不同的算法,我们还介绍了一种简单、标准的语法,用于以文本形式表示机器学习算法。基于从调查中包含的论文中收集的性能指标,我们进一步进行排名分析,以评估不同算法类的比较性能。我们的分析表明,在金融市场预测中,机器学习算法往往优于大多数传统的随机方法。我们进一步发现,平均而言,递归神经网络的表现优于前馈神经网络和支持向量机,这意味着跨多个资产类别和地理位置的金融时间序列中存在可利用的时间依赖性。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
PDF下载:
-->
Evaluating_the_Performance_of_Machine_Learning_Algorithms_in_Financial_Market_Fo.pdf
(379.17 KB)


雷达卡



京公网安备 11010802022788号







