|
对于1<i<N,^fn+1/2i,j-^fni,jt/2=ur(ri,vj)^fn+1/2i+1,j-^fn+1/2i-1,j2r+σr(ri,vj)^fn+1/2i+1,j- 2^fn+1/2i,j+^fn+1/2i-1,jr+uv(ri,vj)^fni,j+1-^fni,j-12v+σv(ri,vj)^fni,j+1- 2^fni,j+^fni,j-1(v) +ργvj^fni+1,j+1-^fni-1,j+1-^fni+1,j-1+^fni-1,j-14rv+α(ri,vj)^fn+1/2i,j。我们重写ur2r-σr(r)^fn+1/2i-1,j+t+2σr(r)- α^fn+1/2i,j+-ur2r-σr(r)^fn+1/2i+1,j=bi,j(3),其中bi,j=^fni,jt+uv^fni,j+1-^fni,j-12v+σv^fni,j+1- 2^fni,j+^fni,j-1(v) +ργvj^fni+1,j+1-^fni-1,j+1-^fni+1,j-1+^fni-1,j-14rvand没有混淆,设ur=ur(ri,vj),类似地,对于uv,σr,σvandα。当i=1时,使用单侧差异方案,我们有^fn+1/21,j-^fn1,jt/2=ur^fn+1/22,j-^fn+1/21,jr+σr^fn+1/23,j- 2^fn+1/22,j+^fn+1/21,j(r) +uv^fn1,j+1-^fn1,j-12v+σv^fn1,j+1- 2^fn1,j+^fn1,j-1(v) +ργvj^fn2,j+1-^fn1,j+1-^fn2,j-1+^fn1,j-12rv+α^fn+1/21,jandt+urr-σr(r)- α^fn+1/21,j+-urr+2σr(r)^fn+1/22,j-σr(r) ^fn+1/23,j=b1,j.(4),其中b1,j=^fn1,jt+uv^fn1,j+1-^fn1,j-12v+σv^fn1,j+1- 2^fn1,j+^fn1,j-1(v) +ργvj^fn2,j+1-^fn1,j+1-^fn2,j-1+^fn1,j-12rv、 类似地,当i=N时,我们有-σr(r) ^fn+1/2N-2,j+urr+2σv(r)^fn+1/2N-1,j+t型-urr-σv(r)- α^fn+1/2N,j=bN,j(5),其中bN,j=^fnN,jt+uv^fnN,j+1-^fnN,j-12v+σv^fnN,j+1- 2^fnN,j+^fnN,j-1(v) +ργvj^fnN,j+1-^fnN-1,j+1-^fnN,j-1+^fnN-1,j-12rv、 设^fn+1/2jand bj表示分别由^fn+1/2i、jand bi、j组成的第j列向量。然后,对于每个j,我们有一个矩阵乘法形式a(j)r^fn+1/2j=bj(6),其中a(j)是除第一行和最后一行之外的三对角矩阵:a(j)r=a(r,j)1,1a(r,j)1,2a(r,j)1,3··0 0a(r,j)2,1a(r,j)2,2a(r,j)2,30 0。。。。。。。。。。。。。。。0.........0 0 a(r,j)N-1,N-2a(r,j)N-1,N-1a(r,j)N-1,N0 0···a(r,j)N,N-2a(r,j)N,N-1a(r,j)N,N其中条目由等式确定。(3) ,(4)和(5)。例如,如果1<1<N,则byEq。
|