楼主: Guanghua123
865 0

MIT18.453组合优化课程资料打包 [推广有奖]

  • 0关注
  • 24粉丝

已卖:2034份资源

硕士生

73%

还不是VIP/贵宾

-

威望
0
论坛币
52984 个
通用积分
32.5756
学术水平
7 点
热心指数
12 点
信用等级
5 点
经验
3600 点
帖子
72
精华
0
在线时间
191 小时
注册时间
2016-2-7
最后登录
2025-12-23

楼主
Guanghua123 发表于 2022-8-24 21:09:53 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

MIT 18.453 Combinatorial Optimization


研究生课程(内涵笔记、作业解答 Combinatorial Optimization_MIT.zip (6.21 MB, 需要: 30 个论坛币)


Course information




Instructor: Michel Goemans, room 2-474.


Prerequisites: Linear algebra. Exposure to discrete mathematics (18.200) is a plus, as well as exposure to algorithms (6.006 and 18.410).


Textbook: There is no required textbook. Lecture notes will be distributed during the term. For additional references, the following textbooks are recommended (roughly in increasing difficulty level or comprehensiveness). The last two are especially recommended to anyone interested in a recent, in-depth coverage of the subject.


  • J. Lee, A First Course in Combinatorial Optimization, Cambridge University Press, 2004.
  • W. Cook, W. Cunningham, W. Pulleyblank and A. Schrijver, Combinatorial Optimization.
  • C. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Prentice-Hall, 1982.
  • E.L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston, 1976.
  • G. Nemhauser and L. Wolsey, Integer and Combinatorial Optimization, John Wiley & Sons, 1988.
  • B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms, Algorithms and Combinatorics 21 Springer, Berlin Heidelberg New York, 2012. Available online with MIT certificates.
  • 3-volume book by A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency , Springer-Verlag, 2003.



Syllabus:


  • Introduction.
  • Cardinality bipartite matching.
  • Efficiency of algorithms.
  • Assignment problem.
  • Non-bipartite matching.
  • Polytopes, linear programming, geometry.
  • Polyhedral combinatorics.
  • Maximum flow problem.
  • Minimum cut problems.
  • The ellipsoid algorithm.
  • The matching polytope.
  • Matroids. Matroid optimization, matroid polytope.
  • Matroid intersection.
  • Arborescence problem.
  • Matroid union.
  • The traveling salesman problem.






二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:课程资料 MIT Optimization introduction certificates

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2025-12-24 01:42