楼主: 张杰2026
530 0

大数据下数模联动的随机退化设备剩余寿命预测技术(部分) [推广有奖]

  • 0关注
  • 0粉丝

硕士生

36%

还不是VIP/贵宾

-

威望
0
论坛币
21 个
通用积分
8.9956
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
2166 点
帖子
79
精华
0
在线时间
58 小时
注册时间
2014-3-26
最后登录
2022-11-11

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

源自:自动化学报   作者:李天梅 司小胜 刘翔 裴洪

摘要


面向大数据背景下随机退化设备剩余寿命(Remaining useful life, RUL)预测的现实需求, 结合随机退化设备监测大数据特点及剩余寿命预测不确定性量化这一核心问题, 深入分析了机理模型与数据混合驱动的剩余寿命预测技术、基于机器学习的剩余寿命预测技术、统计数据驱动的剩余寿命预测技术以及机器学习和统计数据驱动相结合的剩余寿命预测技术的基本研究思想和发展动态, 剖析了当前研究存在的局限性和共性难题. 针对存在的局限性和共性难题, 以多源传感监测大数据下剩余寿命预测问题为例, 提出了一种数模联动的大数据下随机退化设备剩余寿命预测解决思路, 并通过航空发动机多源监测数据初步验证了该思路的可行性和有效性. 最后, 借鉴数模联动思路, 综合考虑机器学习方法和统计数据驱动方法的优势, 紧紧扭住大数据背景下随机退化设备剩余寿命预测不确定性量化问题, 提出了大数据背景下深度学习与随机退化建模交互联动、监测大数据与剩余寿命及其预测不确定性映射机制、非理想大数据下的剩余寿命预测等亟待解决的关键科学问题.

关键词

大数据 / 剩余寿命预测 / 数模联动 / 深度学习 / 随机退化建模

高速列车、航空航天装备、导弹武器、风电装备、工业机器人、石化装备等现代装备在功能不断提升的同时, 正逐渐趋于大型化、多元化和集成化, 这类装备多是由机械传动系统、电磁驱动系统、运动控制系统、信息传感系统等耦合组成的复杂系统, 其服役过程受变环境、变载荷、变工况、大扰动和强冲击等因素影响, 整体及关键部件性能将发生不可避免的退化, 一旦因设备性能退化造成最终失效, 将会造成巨大的人员伤亡和财产损失. 例如, 2014年8月2日发生在我国江苏省昆山市的重大铝粉尘爆炸事故, 共造成97人死亡、163人受伤, 直接经济损失达到3.51亿元, 事后调查表明: 除尘器维护不足而造成集尘桶锈蚀退化破损是主要技术原因. 2017年7月发生在美国密西西比州的美国海军陆战队KC-130运输机坠毁事件, 造成机上16名军人全部遇难, 该事故的调查结果表明发动机螺旋桨性能退化是造成飞机坠毁的主要原因. 因此, 若能在设备性能退化初期, 尤其在尚未造成重大危害时, 根据状态监测信息, 及时发现异常或定量评价设备健康状态并预测其剩余寿命(Remaining useful life, RUL), 据此对设备实施健康管理, 对于切实保障复杂设备的运行安全性、可靠性与经济性具有重要意义. 其中, 剩余寿命预测是连接系统运行状态信息感知与基于运行状态实现个性化精准健康管理的纽带和关键, 在过去十余年得到了长足的发展, 主要技术方法包括失效机理分析方法、数据驱动的方法、机理模型和数据混合驱动方法, 如图1所示. 基于失效机理分析的方法主要通过构建描述设备失效机理的数学模型, 结合特定设备的经验知识和缺陷增长方程实现设备的剩余寿命预测. 由于实际工程设备本身的复杂性、任务与运行环境的多样性,其健康状态演化规律通常难以物理机理建模或者获得失效机理模型的代价过高, 导致失效机理方法及机理模型和数据混合驱动方法存在推广应用难的问题. 因此, 数据驱动的剩余寿命预测技术已成为国际上可靠性工程和自动化技术领域的研究前沿, 过去十余年中得到了长足发展, 在航空航天、军事、工业制造等领域具有极其重要的应用.


图 1  剩余寿命预测方法体系


伴随着先进传感技术的快速发展, 工程设备健康状态感知手段日益丰富, 为设备运行监测大数据的获取提供了更多的可能. 因此, 数据驱动的剩余寿命预测技术发展迎来了新的契机, 针对大数据处理的随机退化设备剩余寿命预测问题得到了大量学者的关注, 相关技术蓬勃发展. 在此背景下, 本文的主要目的在于面向大数据背景下随机退化设备剩余寿命预测的现实需求, 通过分析当前剩余寿命预测技术的发展动态, 旨在探究该领域亟待解决的关键问题和新的发展方向. 为此, 第1节首先结合数据特点对大数据下剩余寿命预测的研究背景、主要方法及思路、核心问题等进行了概述. 第2 ~ 5节分别分析了机理模型与数据混合驱动的剩余寿命预测技术、基于机器学习的剩余寿命预测技术、统计数据驱动的剩余寿命预测技术以及机器学习和统计数据驱动相结合的剩余寿命预测技术的基本研究思想和发展动态, 同时结合随机退化设备监测大数据特点以及剩余寿命预测不确定性量化这一核心问题, 深入剖析了当前研究存在的局限性和共性难题. 第6节针对当前研究存在的局限性, 提出了一种多源传感监测大数据下数模联动的随机退化设备剩余寿命预测问题解决思路(简称为数模联动, 这里需要说明的是, “数”是指数据退化特征提取, “模”是指所提取退化特征时变演化过程随机建模), 通过构建优化目标函数实现数据特征提取与所提取特征时变演化过程随机建模的“联动”, 并通过航空发动机多源监测数据初步验证了该思路的可行性和有效性. 第7节借鉴数模联动思路, 围绕大数据背景下随机退化设备剩余寿命预测不确定性量化这一核心问题, 探讨并提出了大数据背景下深度学习与随机退化建模交互联动、监测大数据与剩余寿命及其预测不确定性映射机制、非理想大数据下的剩余寿命预测等亟待解决的关键科学问题. 第8节总结全文.

1.  大数据下剩余寿命预测问题概述

近年来, 随着无线传感、物联网等技术快速兴起与普及, 各式传感器犹如一张庞大的神经网络密布在装备内部, 实时感知装备的一举一动, 推动剩余寿命预测进入“大数据” 时代. 例如, 军事装备在国家战略安全中具有不可替代的特殊地位, 其各子系统的安全可靠运行举足轻重, 必须依靠状态监测、剩余寿命预测以及预测维护等理论与方法保驾护航. 由于需要监测的军事装备群规模大、每个装备需监测参量多、数据采样频率高、服役时间长, 所以获取了海量监测数据: 一个现代航空发动机, 每10毫秒就能生成几百个传感器信息, 每次飞行能产生TB级的运行监测数据; 现代化工业制造生产线安装有数以万计的各型传感器来监测工业装备的运行过程信息及产品质量信息, 比如大型工业机器人制造商利用云平台监控着百万台工业机器人, 实时获取机器人每个运动关节的转速、角度、位置、温度、振动等信号, 每天需要对TB级以上的数据进行处理. 然而, 这些监测大数据在为设备健康状态感知及剩余寿命预测提供丰富信息的同时, 由于设备工况多变、多源信号差异大、采样策略形式多、信息之间相互耦合、数据价值密度低, 导致数据质量参差不齐, 状态监测大数据呈现不同的统计特性. 根据监测数据呈现的特点, 图2给出了完整监测大数据和非完整监测大数据(具有碎片化、分段的、稀疏性等特征)的示例.


图 2  完整的、碎片化的、稀疏的监测大数据示例


这里完整监测大数据主要针对运行模式比较固定的随机退化设备(如轴承、齿轮等), 能够实现不间断连续监测, 监测大数据涵盖了设备从开始运行到失效比较完整的状态数据, 而非完整监测大数据主要针对受经济条件及现实监测条件限制的随机退化设备(如航空发动机、涡轮泵、配电电池等), 对这类设备进行连续监测采样是不现实的, 只能间歇性地对其监测, 得到的状态监测大数据表现出一定的“碎片化、分段、稀疏”等特点. 因此, 当剩余寿命预测进入大数据时代, 如何根据监测大数据呈现出的不同特点, 充分分析利用丰富的监测大数据资源, 从浩如烟海的数据中进行“沙里淘金”, 深度挖掘出反映设备健康状态的信息并据此进行剩余寿命预测, 是随机退化设备剩余寿命预测领域亟需解决的关键问题.

数据驱动的剩余寿命预测方法基于设备运行监测数据, 通过拟合设备性能变量演化规律并外推到失效阈值, 或建立监测数据与失效时间的映射关系, 以实现剩余寿命预测, 为大数据背景下随机退化设备剩余寿命预测提供了可行的技术思路. 然而, 剩余寿命指当前时刻到系统失效时刻的有效时间间隔, 因此剩余寿命预测实际上是根据当前得到的监测信息, 对系统将来失效事件的预测, 其预测结果不可避免的具有不确定性. van Asselt等从哲学和认识论的角度讨论了预测的不确定性处理问题, 指出预测结果具有不确定性是学术界的共识, 也是当今时代的特征. 联合攻击机F-35项目组研究人员Hess等和Smith等、寿命预测领域代表性学者马里兰大学先进生命周期工程中心Pecht教授等、可靠性领域知名期刊Quality and Reliability Engineering International主编Brombacher教授通过各种事例强调了预测不确定性的量化是剩余寿命预测从理论到应用转化的核心. 美国国家航空航天局(National Aeronautics and Space Administration, NASA)预测与健康管理中心研究规划中也将剩余寿命预测不确定性的管理列为了中心发展路线图的重要研究内容. 由此可见, 预测不确定性的量化是数据驱动随机退化设备剩余寿命预测领域的一个核心问题, 也是解决“敢用、能用” 剩余寿命预测理论技术实现实际工程设备个性化精准健康管理、保障设备长周期安全可靠运行的关键所在.

随着信息技术和传感器技术的迅猛发展, 数据驱动的剩余寿命预测技术由于适用范围广、容易实现、无需深入专业机理知识等优点, 作为其中典型代表的机器学习方法和统计数据驱动方法已获得了大量研究和蓬勃发展, 得到了学术界和工业界的广泛关注, 相关技术已经在导弹武器、航空航天、风力发电、工业制造等领域产生了重要应用[14-16]. 尽管以机器学习方法和统计数据驱动方法为典型代表的数据驱动随机退化设备剩余寿命预测已获得了大量研究和蓬勃发展, 但已有理论与方法在大数据背景下随机退化设备剩余寿命预测及其预测不确定性量化这一核心问题上, 仍然没有系统有效的解决方法, 主要体现在统计数据驱动方法处理大数据能力不足, 而机器学习方法量化预测不确定性能力不足. 因此, 通过对大数据背景下剩余寿命预测研究发展脉络的探究, 深入剖析当前研究存在的瓶颈问题, 对于促进随机退化设备剩余寿命预测技术的发展具有重要意义. 在第2 ~ 5节, 将针对当前大数据背景下剩余寿命预测典型解决思路的研究动态和存在的问题进行具体的分析.

2.  机理模型与数据混合驱动的剩余寿命预测

基于机理模型的方法主要是依据失效机理构建描述设备退化过程的参数化数学模型, 结合设备的设计试验数据或经验知识辨识数学模型参数, 进而基于状态监测数据更新机理模型参数实现设备的剩余寿命预测. 典型的参数识别与更新方法包括: 卡尔曼滤波[17-19]、粒子滤波[20-21]和贝叶斯方法[22-23]等. 常见的用于剩余寿命预测的机理模型包括: Paris模型、Forman模型以及在其基础上的各种改进和扩展模型, 主要用以描述裂纹扩展和层裂增长[24-25]. 例如, Li等[26-27]基于Paris模型, 建立了缺陷增长率与缺陷面积及材料常数的映射关系, 以预测滚动轴承的剩余寿命; Li等[28]提出了Paris裂纹扩展模型, 根据裂纹尺寸和动态载荷预测齿轮的剩余使用寿命; Liang等[29]研究了基于Paris模型的滚珠轴承剩余使用寿命自适应预测方法, 即使在缺乏先验信息且缺陷增长为时变的情况下, 也能获得可靠的预测结果. Oppenheimer等[30]利用线弹性断裂力学, 对转轴建立了基于Forman裂纹扩展的寿命模型; 针对层裂增长故障, Marble等[31]开发了一种涡轮发动机轴承的层裂增长预测模型, 能够根据工况估计层裂增长轨迹和故障时间, 并利用诊断反馈进行自调整, 降低了预测不确定性; Choi等[32]考虑了由于裂纹形成和磨粒磨损引起的层裂增长现象, 提出了滚动接触的层裂增长寿命模型. 在充分理解失效机理并得到准确的模型估计参数后, 基于机理模型的方法能够实现对剩余使用寿命的精确预测. 然而, 以上现有基于机理模型的剩余寿命预测方法未能结合实际运行设备的实时监测数据, 难以准确反映设备当前运行的实际状态, 特别是在设备运行环境、运行工况发生变化时, 若不能利用实时监测数据对模型进行更新, 将产生较大的预测偏差.

为了使得机理模型能够更好地建模实际服役个体设备的性能演变过程, 将设备实时运行监测数据与机理模型进行混合, 将有助于实现剩余寿命预测准确性的提升. 因此, 机理模型与数据混合驱动的剩余寿命预测方法也得到了较多的关注和发展[4]. 最近该方面的研究包括Liao等[33]、Wang等[34]的论文, 这些研究分别针对锂电池系统和旋转机械设备, 提出了机理模型与数据混合驱动的剩余寿命预测方法. 根据机理模型与数据混合驱动实现方式不同, 可将这类混合驱动的剩余寿命预测方法分为两大类: 1)基于监测数据构建机理模型所刻画退化状态的测量模型, 运用卡尔曼滤波、粒子滤波等方法估计退化状态和机理模型参数, 然后通过机理模型预测设备的剩余寿命[12, 35]; 2)首先分别基于数据和机理模型进行设备的剩余寿命预测, 然后利用决策层融合方法实现集成基于数据和基于机理模型的剩余寿命预测[36-37]. 以上两类机理模型与数据混合驱动实现剩余寿命预测的方式各具优势: 第1种方式能够充分考虑退化状态难以直接测量的实际, 在考虑监测数据中测量噪声的情况下, 可实现隐含退化状态的估计和机理模型参数的更新, 使得最终的预测结果能够更准确地反映设备当前的实际状态; 第2种方式实现过程相对简单独立, 决策层融合的形式较为多样, 如平均法、权重平均、核回归、证据组合等, 能够集成多种方法的优势, 有助于提升预测结果的鲁棒性.

虽然基于机理模型的方法和机理模型与数据混合驱动方法得到了一定的发展, 但其成功应用的基础是可获取精确可靠的机理模型. 随着当代设备逐步呈现复杂化、非线性化以及高维化等特征, 其健康状态演化规律通常难以精确机理建模或者获得失效机理模型的成本过高. 现有研究中通过物理机理分析、理化分析、实验分析等手段获取的机理模型主要针对特定材料或对象, 这一点也可以通过当前机理模型的种类相当匮乏反映出, 由此在一定程度上限制了这类方法的广泛应用. 因此, 在大数据背景下, 通过挖掘数据中隐含的设备健康状态信息, 发展数据驱动的剩余寿命预测方法成为当前的主流和研究的焦点.


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:预测技术 大数据 Engineering OPPENHEIMER reliability

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加JingGuanBbs
拉您进交流群

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2024-5-4 10:33