楼主: 我是小趴菜
2176 0

[数据挖掘新闻] 混淆矩阵和ROC曲线评判模型的效果 [推广有奖]

  • 0关注
  • 4粉丝

教授

35%

还不是VIP/贵宾

-

威望
0
论坛币
29650 个
通用积分
380.5350
学术水平
1 点
热心指数
1 点
信用等级
0 点
经验
7150 点
帖子
670
精华
0
在线时间
37 小时
注册时间
2022-8-30
最后登录
2023-4-4

楼主
我是小趴菜 发表于 2022-11-11 11:42:23 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

如上图的混淆矩阵,我们可以确定预测模型的灵敏度和特异度。

灵敏度指的是模型“击中”的概率,也就是对于实际发生(取值为1)的样本,模型预测为1的概率。对应上图的公式为A/(A+B)。

特异度指的是模型“正确否定”的概率,也就是说对于实际没发生(取值为0)的样本,模型预测为0的概率。对应上图的公式为D/(C+D)。

因此,可以看到不管是灵敏度还是特异度,都是越高,说明我们的模型越有效。在实际应用中,由于逻辑回归模型计算的结果其实是一个相对可能性p,因此我们可以根据实际情况调整判断取值为1的p的标准。更有侧重性地提高灵敏度或者特异度。

除了使用混淆矩阵,我们还可以通过ROC曲线的方式来图形化地判断模型效果。



ROC曲线也是基于灵敏度和特异度来进行判断的。曲线下面积AUC指的是ROC曲线、底线和右侧线围成的面积。ROC曲线的面积一般在0.5-1之间。这个数值越接近1,表明模型预测能力越强。当AUC在0.7-0.9时,我们认为模型有较高的判断作用。而AUC接近0.5的时候,我们人为这个模型是无效的




二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:ROC曲线 ROC 逻辑回归模型 模型预测 逻辑回归

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2026-1-9 03:42