楼主: 我是小趴菜
640 0

[数据挖掘新闻] 决策树 有哪些优缺点? [推广有奖]

  • 0关注
  • 4粉丝

教授

35%

还不是VIP/贵宾

-

威望
0
论坛币
29650 个
通用积分
380.5350
学术水平
1 点
热心指数
1 点
信用等级
0 点
经验
7150 点
帖子
670
精华
0
在线时间
37 小时
注册时间
2022-8-30
最后登录
2023-4-4

楼主
我是小趴菜 发表于 2022-11-15 09:35:35 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

优点:

1.概念简单,计算复杂度不高,可解释性强,输出结果易于理解;

2.数据的准备工作简单, 能够同时处理数据型和常规型属性,其他的技术往往要求数据属性的单一。

3.对中间值得确实不敏感,比较适合处理有缺失属性值的样本,能够处理不相关的特征;

4.应用范围广,可以对很多属性的数据集构造决策树,可扩展性强。决策树可以用于不熟悉的数据集合,并从中提取出一些列规则 这一点强于KNN。

缺点:

1.容易出现过拟合;

2.对于那些各类别样本数量不一致的数据,在决策树当中,信息增益的结果偏向于那些具有更多数值的特征。

3. 信息缺失时处理起来比较困难。 忽略数据集中属性之间的相关性。


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:决策树 优缺点 样本数量 输出结果 可扩展性

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2026-2-5 15:11