楼主: 我是小趴菜
486 0

[数据挖掘新闻] 基于抽样的算法SMOTE [推广有奖]

  • 0关注
  • 4粉丝

教授

35%

还不是VIP/贵宾

-

威望
0
论坛币
29650 个
通用积分
380.5350
学术水平
1 点
热心指数
1 点
信用等级
0 点
经验
7150 点
帖子
670
精华
0
在线时间
37 小时
注册时间
2022-8-30
最后登录
2023-4-4

楼主
我是小趴菜 发表于 2022-12-12 16:13:45 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
基于抽样的算法SMOTE

2002年,引入了一种基于抽样的算法SMOTE(Synthetic Minority Over-Sampling Technique),试图解决类不平衡问题。由于其简单性和有效性,它是最常用的方法之一。它是过采样和欠采样的组合,但过采样方法不是复制少数类,而是通过算法构造新的少数类数据实例。

在传统的过采样中,少数类正在被复制。在SMOTE中,以这种方式构造新的少数派实例:



构造算法背后的直觉是过采样导致过度拟合,因为重复实例导致决策边界收紧。相反,我们将创建“类似”的示例。对于机器学习算法,这些新构造的实例不是精确的副本,因此软化了决策边界。这可以说明如下:


结果,分类器更通用并且不会过度拟合。



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Mote SMO Synthetic Technique Minority

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2026-1-2 16:02