|
依题意及数据
应该是nreg=4; nobs=10; nvar=8
不过楼主给的x数据不足
所以我修改数据并改为
nreg=3; nobs=10; nvar=3
#############
library(bayesm)
R=10
nreg=3; nobs=10; nvar=3
Z=cbind(c(rep(1,nreg)),3*runif(nreg)); Z[,2]=Z[,2]-mean(Z[,2])
x = structure(.Data = c(1,2,3,4,5,6,7,8,3,5,4,3,6,7,1,2,2,2,5,2,4,3,2,3,
2,7,4,3,2,7,5,2,3,5,2,5,6,5,3,2,1,2,3,4,7,5,4,1,
2,3,4,2,2,3,7,1,1,4,2,7,5,4,2,6,2,3,7,5,4,3,2,4,
2,1,3,4,2,4,5,2,2,7,4,3,2,7,2,3,4,2),.Dim=c(10,3,3))
y=structure(.Data=c(1,1,1,1,1,2,1,2,2,0,0,1,1,0,0,0,0,2,1,1,2,1,1,0,1,0,1,1,1,1),.Dim = c(10,3))
iota=c(rep(1,nobs))
regdata=NULL
for (reg in 1:3) {
X=cbind(iota,x[,,reg])
Y=y[,reg]
regdata[[reg]]=list(y=Y,X=X) }
Data1=list(regdata=regdata,Z=Z)
Mcmc1=list(R=R,keep=1)
out=rhierLinearModel(Data=Data1,Mcmc=Mcmc1)
##########
out
Starting Gibbs Sampler for Linear Hierarchical Model
3 Regressions
2 Variables in Z (if 1, then only intercept)
Prior Parms:
Deltabar
[,1] [,2] [,3] [,4]
[1,] 0 0 0 0
[2,] 0 0 0 0
A
[,1] [,2]
[1,] 0.01 0.00
[2,] 0.00 0.01
nu.e (d.f. parm for regression error variances)= 3
Vbeta ~ IW(nu,V)
nu = 7
V
[,1] [,2] [,3] [,4]
[1,] 7 0 0 0
[2,] 0 7 0 0
[3,] 0 0 7 0
[4,] 0 0 0 7
MCMC parms:
R= 10 keep= 1
MCMC Iteration (est time to end - min)
Total Time Elapsed: 0
> names(out)
[1] "Vbetadraw" "Deltadraw" "betadraw" "taudraw"
|