楼主: xge2000
3676 1

[书籍介绍] 新书简介:Flexible Parametric Survival Analysis Using Stata: Beyond the Cox Mode [推广有奖]

已卖:3271份资源

学科带头人

64%

还不是VIP/贵宾

-

威望
0
论坛币
9637 个
通用积分
141.5334
学术水平
15 点
热心指数
28 点
信用等级
15 点
经验
88504 点
帖子
1864
精华
0
在线时间
1076 小时
注册时间
2006-7-15
最后登录
2025-7-19

楼主
xge2000 发表于 2011-8-11 14:35:16 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Table of contentsList of tables
List of figures
Preface
1 Introduction
1.1 Goals
1.2 A brief review of the Cox proportional hazards model
1.3 Beyond the Cox model
1.3.1 Estimating the baseline hazard
1.3.2 The baseline hazard contains useful information
1.3.3 Advantages of smooth survival functions
1.3.4 Some requirements of a practical survival analysis
1.3.5 When the proportional-hazards assumption is breached

1.4 Why parametric models?
1.4.1 Smooth baseline hazard and survival functions
1.4.2 Time-dependent HRs
1.4.3 Modeling on different scales
1.4.4 Relative survival
1.4.5 Prediction out of sample
1.4.6 Multiple time scales

1.5 Why not standard parametric models?
1.6 A brief introduction to stpm2
1.6.1 Estimation (model fitting)
1.6.2 Postestimation facilities (prediction)

1.7 Basic relationships in survival analysis
1.8 Comparing models
1.9 The delta method
1.10 Ado-file resources
1.11 How our book is organized

2 Using stset and stsplit
2.1 What is the stset command?
2.2 Some key concepts
2.3 Syntax of the stset command
2.4 Variables created by the stset command
2.5 Examples of using stset
2.5.1 Standard survival data
2.5.2 Using the scale( ) option
2.5.3 Date of diagnosis and date of exit
2.5.4 Date of diagnosis and date of exit with the scale( ) option
2.5.5 Restricting the follow-up time
2.5.6 Left-truncation
2.5.7 Age as the time scale

2.6 The stsplit command
2.6.1 Time-dependent effects
2.6.2 Time-varying covariates

2.7 Conclusion

3 Graphical introduction to the principal datasets
3.1 Introduction
3.2 Rotterdam breast cancer data
3.3 England and Wales breast cancer data
3.4 Orchiectomy data
3.5 Conclusion

4 Poisson models
4.1 Introduction
4.2 Modeling rates with the Poisson distribution
4.3 Splitting the time scale
4.3.1 The piecewise exponential model
4.3.2 Time as just another covariate

4.4 Collapsing the data to speed up computation
4.5 Splitting at unique failure times
4.5.1 Technical note: Why the Cox and Poisson approaches are equivalent

4.6 Comparing a different number of intervals
4.7 Fine splitting of the time scale
4.8 Splines: Motivation and definition
4.8.1 Calculating splines
4.8.2 Restricted cubic splines
4.8.3 Splines: Application to the Rotterdam data
4.8.4 Varying the number of knots
4.8.5 Varying the location of the knots
4.8.6 Estimating the survival function

4.9 FPs: Motivation and definition
4.9.1 Application to Rotterdam data
4.9.2 Higher order FP models
4.9.3 FP function selection procedure

4.10 Discussion

5 Royston–Parmar models
5.1 Motivation and introduction
5.1.1 The exponential distribution
5.1.2 The Weibull distribution
5.1.3 Generalizing the Weibull
5.1.4 Estimating the hazard function

5.2 Proportional hazards models
5.2.1 Generalizing the Weibull
5.2.2 Example
5.2.3 Comparing parameters of PH(1) and Weibull models

5.3 Selecting a spline function
5.3.1 Knot positions
Example

5.3.2 How many knots?

5.4 PO models
5.4.1 Introduction
5.4.2 The loglogistic model
5.4.3 Generalizing the loglogistic model
5.4.4 Comparing parameters of PO(1) and loglogistic models
Example


5.5 Probit models
5.5.1 Motivation
5.5.2 Generalizing the probit model
5.5.3 Comparing parameters of probit(1) and lognormal models
5.5.4 Comments on probit and POs models

5.6 Royston–Parmar (RP) models
5.6.1 Models with θ not equal to 0 or 1
5.6.2 Example
5.6.3 Likelihood function and parameter estimation
5.6.4 Comparing regression coefficients
5.6.5 Model selection
5.6.6 Sensitivity to number of knots
5.6.7 Sensitivity to location of knots

5.7 Concluding remarks

6 Prognostic models
6.1 Introduction
6.2 Developing and reporting a prognostic model
6.3 What does the baseline hazard function mean?
6.3.1 Example

6.4 Model selection
6.4.1 Choice of scale and baseline complexity
Example

6.4.2 Selection of variables and functional forms
Example


6.5 Quantitative outputs from the model
6.5.1 Survival probabilities for individuals
6.5.2 Survival probabilities across the risk spectrum
6.5.3 Survival probabilities at given covariate values
6.5.4 Survival probabilities in groups
6.5.5 Plotting adjusted survival curves
6.5.6 Plotting differences between survival curves
6.5.7 Centiles of the survival distribution

6.6 Goodness of fit
6.6.1 Example

6.7 Discrimination and explained variation
6.7.1 Example
6.7.2 Harrell’s C index of concordance

6.8 Out-of-sample prediction: Concept and applications
6.8.1 Extrapolation of survival functions: Basic technique
6.8.2 Extrapolation of survival functions: Further investigations
6.8.3 Validation of prognostic models: Basics
6.8.4 Validation of prognostic models: Further comments

6.9 Visualization of survival times
6.9.1 Example

6.10 Discussion

7 Time-dependent effects
7.1 Introduction
7.2 Definitions
7.3 What do we mean by a TD effect?
7.4 Proportional on which scale?
7.5 Poisson models with TD effects
7.5.1 Piecewise models
7.5.2 Using restricted cubic splines

7.6 RP models with TD effects
7.6.1 Piecewise HRs
7.6.2 Continuous TD effects
7.6.3 More than one TD effect
7.6.4 Stratification is the same as including TD effects

7.7 TD effects for continuous variables
7.8 Attained age as the time scale
7.8.1 The orchiectomy data
7.8.2 Proportional hazards model
7.8.3 TD model

7.9 Multiple time scales
7.10 Prognostic models with TD effects
7.10.1 Example

7.11 Discussion

8 Relative survival
8.1 Introduction
8.2 What is relative survival?
8.3 Excess mortality and relative survival
8.3.1 Excess mortality
8.3.2 Relative survival is a ratio

8.4 Motivating example
8.5 Life-table estimation of relative survival
8.5.1 Using strs

8.6 Poisson models for relative survival
8.6.1 Piecewise models
8.6.2 Restricted cubic splines

8.7 RP models for relative survival
8.7.1 Likelihood for relative survival models
8.7.2 Proportional cumulative excess hazards
8.7.3 RP models on other scales
8.7.4 Application to England and Wales breast cancer data
8.7.5 Relative survival models on other scales
8.7.6 Time-dependent effects

8.8 Some comments on model selection
8.9 Age as a continuous variable
8.10 Concluding remarks

9 Further topics
9.1 Introduction
9.2 Number needed to treat
9.2.1 Example

9.3 Average and adjusted survival curves
9.3.1 Renal data

9.4 Modeling distributions with RP models
9.4.1 Example 1: Rotterdam breast cancer data
9.4.2 Example 2: CD4 lymphocyte data
9.4.3 Example 3: Prostate cancer data

9.5 Multiple events
9.5.1 Introduction
9.5.2 The AG model
9.5.3 The WLW model
9.5.4 The PWP model
9.5.5 Multiple events in RP models
9.5.6 Summary

9.6 Bayesian RP models
9.6.1 Introduction
9.6.2 The “zeros trick” in WinBUGS
9.6.3 Fitting a RP model
9.6.4 Summary

9.7 Competing risks
9.7.1 Summary

9.8 Period analysis
9.8.1 Introduction
9.8.2 What is period analysis?
9.8.3 Application to England and Wales breast cancer data

9.9 Crude probability of death from relative survival models
9.9.1 Introduction
9.9.2 Application to England and Wales breast cancer data
9.9.3 Conclusion

9.10 Final remarks

References
Author index
Subject index
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Parametric Survival Analysis Flexible Analysi practical survival Beyond useful

本帖被以下文库推荐

沙发
hqs00000 在职认证  发表于 2012-9-6 11:53:24
只能看看目录。。。。哎  纠结  楼主您不如不放出来。。。
失去的东西太多了!

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-25 18:53