目标检测论文写作模板(初稿)②
2.1 方法一理论部分
写作方法一:看方法原理的原文,比如添加了ECA注意力机制,就看原论文对原理的阐述。
写作方法二:从知网上下载已经发表的论文,搜索关键词,比如搜索ECA注意力机制,就会有相关的论文出现,下载后将几篇论文中的ECA注意力机制的原理内容先复制过来后,然后用自己理解的话进行说,或者进行降重
写作方法三:从csdn、知乎等平台上对该方法的理解,但是不够权威,良莠不齐,只能作为备用手段。
写作方法四:通过添加方法的代码进行理解原理,然后进行写作和画图。
写作方法五:通过询问导师或者师兄师姐等看能否得到更深的理解。
注意事项:需要将研究的理论与检测的应用背景结合起来,不仅仅说明方法的基本原理,还要说明为什么用该方法,以及怎么用到该方法,最后可以达到什么样的效果。
2.2 改进方法二原理
同方法一
3 实验数据及处理
本文网络模型训练所用实验数据来源于国内公开的nwpu-10数据集,为满足深度学习对大量训练样本需求,增加模型泛化能力,本文采用随机缩放、翻转、亮度增强、对比度增强、颜色增强和Mosaic的方式进行数据增强。
3.1 评价指标
以下为模板,自己再进行修改,根据自己掌握的资料。降低重复率
本文实验采用检测精度和检测速度来衡量模型检测性能[23]。检测精度指标包括召回率(Recall,R)、精度(Precision,P)、平均精度(average precision,AP)、平均均值精度mAP(Mean Average Precision);模型检测速度指标采用检测单张图像所用的时间t;网络模型复杂度用网络层数(Layer)、模型权重(Weight)、网络参数量(Parameters)来评估,三者数值越大,网络模型越复杂。
3.2 实验平台
结合自己的实际情况进行更改填写,以下为模板。
本实验基于Ubuntu 18.04操作系统,Intel(R)Xeon(R)Gold 5218处理器,128G内存,64内核,使用Pytorch 1.8.0框架,通过一台NVIDIA Tesla T4显卡进行训练,显存为32GB。Python版本为3.8,CUDA版本为11.1.1。模型训练的迭代次数设置为500,batch size设置为64。训练过程中动态调整学习率,采用NAG(Nesterov Accelerated Gradient)优化器进行优化,momentum设置为0.937。采用周期性学习率进行调整和Warm-Up方法预热学习率,初始学习率设置为0.01,学习率衰减权重为0.0005,在Warm-Up 阶段,采用一维线性插值对每次迭代的学习率进行更新直至0.002,使用余弦煺火学习率衰减(Cosine Annealing)方法自动调整学习率。
3.3 数据集
根据自己的数据集进行填写,以下为模板。数据集资料网上进行搜索,或者知网搜索相关论文后,参考借鉴对数据集的介绍。
本文实验采用数据集来源于国内公开的HRSC2016数据集,共包括1061张海面场景图像和近岸场景,其中大部分为近岸图像,图像分辨率为0.4-2m。数据集有以下几个特点:(1)图像背景复杂,包括港口码头、陆地建筑、海面、小岛、薄云等;(2)舰船尺度变化大,同一张图像舰船尺度差异较大;(3)港口码头内舰船排列密集。HRSC2016对数据集进行了三级分类,一级分类为船,二级分类为航母、军舰、商船、潜艇四大类,三级分类为各型号细分。其中,军舰类型主要包含航母、驱逐舰、护卫舰等10种类型的舰船,民舰类型主要包含货船、游轮、气垫船等多种类型的民船,图4展示了数据集部分示例图像。