楼主: 2019hansi
520 0

[其他论文] 一种基于区域密度划分改进的ORB特征提取算法 [推广有奖]

  • 3关注
  • 4粉丝

等待验证会员

院士

46%

还不是VIP/贵宾

-

威望
0
论坛币
14 个
通用积分
86.6097
学术水平
0 点
热心指数
1 点
信用等级
0 点
经验
40571 点
帖子
1783
精华
0
在线时间
819 小时
注册时间
2019-6-4
最后登录
2026-1-9

楼主
2019hansi 发表于 2023-8-21 09:39:11 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
1 论文标题:一种基于区域密度划分改进的ORB特征提取算法

2 作者信息:王 鹏:盐城工学院电气工程学院,江苏 盐城

3 出处和链接:王鹏. 一种基于区域密度划分改进的ORB特征提取算法[J]. 建模与仿真, 2023, 12(4): 4233-4245. https://doi.org/10.12677/MOS.2023.124386

4 摘要:原ORB算法在面对特征点分布不均匀的图像做特征提取时,常会出现特征点提取效率低,特征点冗余的问题,导致特征点在匹配时出现误匹配,甚至位姿丢失的情况。针对这一问题,提出了一种基于区域密度划分改进的ORB特征提取算法。首先对图像构造图像金字塔,确保图像的尺度不变性。其次用FAST特征点提取算法对图像进行特征点提取,提取完毕后,使用核密度估计方法,以每个特征点为中心,计算该点周围的密度值,并采用聚类算法将密度分布相似的特征点看成一簇,根据每一簇的特征点密度和图像平均密度的比值,将图像区域划分为三类,即特征点密集区域,特征点稀疏区域和特征点均匀区域。然后利用自适应四叉树法对三个区域图像进行分割,并根据每个区域的特征点密度计算阈值,达到特征点筛选均匀的目的。然后利用自适应非极大值抑制法对特征点进行最佳筛选,并使用BRIEF算法计算出特征点的描述子。最后进行特征点匹配。实验结果表明,本文算法相较于传统的ORB算法有效地减少了冗余特征点的数量,降低了特征点的重叠率,在特征匹配的精度和效率上有了明显的提升。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:盐城工学院 核密度估计 Brief HTTP 聚类算法

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-11 03:00