各位计量大神 一下是我的指令和结果,总是Warning - collinearities detected Vars dropped: dyear10 工具变量这种问题该怎么解决呢,如果去掉时间虚拟变量 第二部的回归结果又不显著 这种情况怎么处理呢 跪求大神帮助
. xtivreg2 产出导向规模报酬可变内部支出 (数字经济综合指数= 工具变量 ) 产业结构
> 城镇化水平 经济发展水平 工业化水平 社会消费水平 信息化水平 税负水平 产业集聚程
> 度 劳动力水平 dyear*,fe r first
Warning - endogenous variable(s) collinear with instruments
Vars now exogenous: 数字经济综合指数
Warning - collinearities detected
Vars dropped: dyear10 工具变量
FIXED EFFECTS ESTIMATION
------------------------
Number of groups = 11 Obs per group: min = 10
avg = 10.0
max = 10
Warning - collinearities detected
Vars dropped: dyear10 工具变量
Unable to display first-stage estimates; macro e(first) is missing
Unable to display summary of first-stage estimates; macro e(first) is missing
OLS estimation
--------------
Estimates efficient for homoskedasticity only
Statistics robust to heteroskedasticity
Number of obs = 110
F( 19, 80) = 2.64
Prob > F = 0.0014
Total (centered) SS = 7.086963569 Centered R2 = 0.4040
Total (uncentered) SS = 7.086963569 Uncentered R2 = 0.4040
Residual SS = 4.223607224 Root MSE = .2065
-------------------------------------------------------------------------------
| Robust
产出导向规~出 | Coef. Std. Err. z P>|z| [95% Conf. Interval]
--------------+----------------------------------------------------------------
数字经济综~数 | .2111339 .1229122 1.72 0.086 -.0297696 .4520374
产业结构 | -.793473 .2181105 -3.64 0.000 -1.220962 -.3659842
城镇化水平 | -2.620333 2.237097 -1.17 0.241 -7.004964 1.764297
经济发展水平 | -.7640911 .5127724 -1.49 0.136 -1.769107 .2409244
工业化水平 | -3.214504 2.393023 -1.34 0.179 -7.904743 1.475735
社会消费水平 | -.7672553 .9314296 -0.82 0.410 -2.592824 1.058313
信息化水平 | 1.826087 1.67552 1.09 0.276 -1.457873 5.110046
税负水平 | -1.549244 3.571611 -0.43 0.664 -8.549472 5.450985
产业集聚程度 | -.9985367 8.000473 -0.12 0.901 -16.67918 14.6821
劳动力水平 | .3575724 .6677259 0.54 0.592 -.9511464 1.666291
dyear1 | -.580783 .2847743 -2.04 0.041 -1.13893 -.0226357
dyear2 | -.3572266 .2559053 -1.40 0.163 -.8587918 .1443387
dyear3 | -.3591753 .2427604 -1.48 0.139 -.834977 .1166264
dyear4 | -.0074321 .2572308 -0.03 0.977 -.5115952 .496731
dyear5 | -.1155756 .2276081 -0.51 0.612 -.5616792 .3305281
dyear6 | .0181804 .1837021 0.10 0.921 -.3418692 .37823
dyear7 | .0453854 .1724124 0.26 0.792 -.2925367 .3833074
dyear8 | -.0796499 .1365564 -0.58 0.560 -.3472956 .1879957
dyear9 | .1022529 .1001425 1.02 0.307 -.0940228 .2985286
dyear10 | 0 (omitted)
-------------------------------------------------------------------------------
Included instruments: 数字经济综合指数 产业结构 城镇化水平
经济发展水平 工业化水平 社会消费水平
信息化水平 税负水平 产业集聚程度
劳动力水平 dyear1 dyear2 dyear3 dyear4 dyear5 dyear6
dyear7 dyear8 dyear9
Dropped collinear: dyear10 工具变量
Reclassified as exog: 数字经济综合指数
------------------------------------------------------------------------------
xtivreg2 产出导向规模报酬可变内部支出 (数字经济综合指数= 工具变量 ) 产业结构
> 城镇化水平 经济发展水平 工业化水平 社会消费水平 信息化水平 税负水平 产业集聚程
> 度 劳动力水平 ,fe r first
FIXED EFFECTS ESTIMATION
------------------------
Number of groups = 11 Obs per group: min = 10
avg = 10.0
max = 10
First-stage regressions
-----------------------
FIXED EFFECTS ESTIMATION
------------------------
Number of groups = 11 Obs per group: min = 10
avg = 10.0
max = 10
First-stage regression of 数字经济综合指数:
Statistics robust to heteroskedasticity
Number of obs = 110
------------------------------------------------------------------------------
| Robust
数字经济~数 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
工具变量 | -4.878279 .5300985 -9.20 0.000 -5.931573 -3.824984
产业结构 | .1775134 .1419909 1.25 0.215 -.1046194 .4596463
城镇化水平 | 2.852474 1.027594 2.78 0.007 .8106669 4.89428
经济发展水平 | .5764194 .4051681 1.42 0.158 -.228641 1.38148
工业化水平 | .6121369 1.356446 0.45 0.653 -2.083093 3.307367
社会消费水平 | .3167067 .5556454 0.57 0.570 -.7873489 1.420762
信息化水平 | -1.957551 .8754223 -2.24 0.028 -3.696996 -.2181052
税负水平 | 5.503524 2.271559 2.42 0.017 .9899845 10.01706
产业集聚程度 | -2.479649 6.182661 -0.40 0.689 -14.76447 9.805168
劳动力水平 | .4151037 .5152914 0.81 0.423 -.6087693 1.438977
------------------------------------------------------------------------------
F test of excluded instruments:
F( 1, 89) = 84.69
Prob > F = 0.0000
Sanderson-Windmeijer multivariate F test of excluded instruments:
F( 1, 89) = 84.69
Prob > F = 0.0000
Summary results for first-stage regressions
-------------------------------------------
(Underid) (Weak id)
Variable | F( 1, 89) P-val | SW Chi-sq( 1) P-val | SW F( 1, 89)
数字经济综合 | 84.69 0.0000 | 94.20 0.0000 | 84.69
NB: first-stage test statistics heteroskedasticity-robust
Stock-Yogo weak ID F test critical values for single endogenous regressor:
10% maximal IV size 16.38
15% maximal IV size 8.96
20% maximal IV size 6.66
25% maximal IV size 5.53
Source: Stock-Yogo (2005). Reproduced by permission.
NB: Critical values are for i.i.d. errors only.
Underidentification test
Ho: matrix of reduced form coefficients has rank=K1-1 (underidentified)
Ha: matrix has rank=K1 (identified)
Kleibergen-Paap rk LM statistic Chi-sq(1)=16.83 P-val=0.0000
Weak identification test
Ho: equation is weakly identified
Cragg-Donald Wald F statistic 69.62
Kleibergen-Paap Wald rk F statistic 84.69
Stock-Yogo weak ID test critical values for K1=1 and L1=1:
10% maximal IV size 16.38
15% maximal IV size 8.96
20% maximal IV size 6.66
25% maximal IV size 5.53
Source: Stock-Yogo (2005). Reproduced by permission.
NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors.
Weak-instrument-robust inference
Tests of joint significance of endogenous regressors B1 in main equation
Ho: B1=0 and orthogonality conditions are valid
Anderson-Rubin Wald test F(1,89)= 0.25 P-val=0.6170
Anderson-Rubin Wald test Chi-sq(1)= 0.28 P-val=0.5965
Stock-Wright LM S statistic Chi-sq(1)= 0.46 P-val=0.4976
NB: Underidentification, weak identification and weak-identification-robust
test statistics heteroskedasticity-robust
Number of observations N = 110
Number of regressors K = 10
Number of endogenous regressors K1 = 1
Number of instruments L = 10
Number of excluded instruments L1 = 1
IV (2SLS) estimation
--------------------
Estimates efficient for homoskedasticity only
Statistics robust to heteroskedasticity
Number of obs = 110
F( 10, 89) = 2.90
Prob > F = 0.0035
Total (centered) SS = 7.086963569 Centered R2 = 0.1959
Total (uncentered) SS = 7.086963569 Uncentered R2 = 0.1959
Residual SS = 5.698881558 Root MSE = .2399
-------------------------------------------------------------------------------
| Robust
产出导向规~出 | Coef. Std. Err. z P>|z| [95% Conf. Interval]
--------------+----------------------------------------------------------------
数字经济综~数 | -.0855462 .1650486 -0.52 0.604 -.4090354 .2379431
产业结构 | -.5174388 .2010157 -2.57 0.010 -.9114223 -.1234553
城镇化水平 | 1.066667 2.052192 0.52 0.603 -2.955555 5.088889
经济发展水平 | -1.058762 .5046916 -2.10 0.036 -2.04794 -.0695848
工业化水平 | -5.453276 2.582114 -2.11 0.035 -10.51412 -.392426
社会消费水平 | .175828 .9528183 0.18 0.854 -1.691662 2.043318
信息化水平 | .071273 1.141723 0.06 0.950 -2.166463 2.309009
税负水平 | 2.047937 3.16205 0.65 0.517 -4.149567 8.245442
产业集聚程度 | -3.941175 9.592704 -0.41 0.681 -22.74253 14.86018
劳动力水平 | .8587491 .7670939 1.12 0.263 -.6447274 2.362226
-------------------------------------------------------------------------------
Underidentification test (Kleibergen-Paap rk LM statistic): 16.831
Chi-sq(1) P-val = 0.0000
------------------------------------------------------------------------------
Weak identification test (Cragg-Donald Wald F statistic): 69.620
(Kleibergen-Paap rk Wald F statistic): 84.688
Stock-Yogo weak ID test critical values: 10% maximal IV size 16.38
15% maximal IV size 8.96
20% maximal IV size 6.66
25% maximal IV size 5.53
Source: Stock-Yogo (2005). Reproduced by permission.
NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors.
------------------------------------------------------------------------------
Hansen J statistic (overidentification test of all instruments): 0.000
(equation exactly identified)
------------------------------------------------------------------------------
Instrumented: 数字经济综合指数
Included instruments: 产业结构 城镇化水平 经济发展水平
工业化水平 社会消费水平 信息化水平
税负水平 产业集聚程度 劳动力水平
Excluded instruments: 工具变量
------------------------------------------------------------------------------


雷达卡




京公网安备 11010802022788号







