先说一下,你的论文内容写的太好了!
你的数据GMM都OK,
我重新写了个6个模型的 GMM code.txt.
%%%%%%%%
MLE CIR model,我找了篇文献
MAXIMUM LIKELIHOOD ESTIMATION OF THE COX-INGERSOLL-ROSS PROCESS: THE MATLAB IMPLEMENTATION
log-likelihood function的确和你的有所不同
我用你的数据做的结果如下:
lnL4 = -8.1672e+003
parameters se t-value p-value
10.5529 0.0049 2161.3001 0.0000
0.0206 0.0006 37.0483 0.0000
0.2459 0.0001 3990.1709 0.0000
GMM:
Long-run mean, theta = 2.0662%
Speed of adj, kappa = 0.3369
Volatility parm, sigma = 0.0504
MLE VASICEK model,我亦找了篇文献
VASICEK INTEREST RATE MODEL:PARAMETER ESTIMATION,
EVOLUTION OF THE SHORT-TERM INTEREST RATE AND TERM STRUCTURE
这是用EXCEL做的
你可参考公式(14),(15),(17)
有了两篇文献可参考,
MLE的部分你应该很快就可修改完成
有关的程序文献一并传上
但因MLE部分可能还要修改
未臻成熟,为免误导,我设了pw.
pw在你的短信息
GMM_MLE.rar
(602.61 KB)
%%%%%%%%%Result:
%%%%%%%%%Full
------------------ GMM PARAMETER ESTIMATES -----------------
Parameter Coeff Std Err Null t-stat p-val
alpha 0.014720 0.007334 0.00 2.01 0.0447
beta -0.713333 0.373422 0.00 -1.91 0.0561
sigma^2 729.803367 610.598439 0.00 1.20 0.2320
gamma 2.222879 0.128451 0.50 13.41 0.0000
Long-run mean, theta = 2.0636%
Speed of adj, kappa = 0.7133
Volatility parm, sigma = 27.0149
Cond. Vol. parm, gamma = 2.2229
Average Cond Volatility = 0.0377%
R^2 (yld change) = 0.0001
%%%%%%%%Merton
------------------ GMM PARAMETER ESTIMATES -----------------
Parameter Coeff Std Err Null t-stat p-val
alpha 0.000790 0.000425 0.00 1.86 0.0633
sigma^2 0.000051 0.000011 0.00 4.60 0.0000
Constraints: beta= 0.0000 gamma= 0.0000
Long-run mean, theta = -Inf%
Speed of adj, kappa = -0.0000
Volatility parm, sigma = 0.0072
Cond. Vol. parm, gamma = 0.0000
Average Cond Volatility = 0.0445%
R^2 (yld change) = 0.0000
%%%%%%%Vasicek
------------------ GMM PARAMETER ESTIMATES -----------------
Parameter Coeff Std Err Null t-stat p-val
alpha 0.006980 0.004472 0.00 1.56 0.1186
beta -0.338391 0.244355 0.00 -1.38 0.1661
sigma^2 0.000049 0.000011 0.00 4.43 0.0000
Constraints: gamma= 0.0000
Long-run mean, theta = 2.0626%
Speed of adj, kappa = 0.3384
Volatility parm, sigma = 0.0070
Cond. Vol. parm, gamma = 0.0000
Average Cond Volatility = 0.0434%
R^2 (yld change) = 0.0000
%%%%%%%CIR
------------------ GMM PARAMETER ESTIMATES -----------------
Parameter Coeff Std Err Null t-stat p-val
alpha 0.006961 0.004417 0.00 1.58 0.1151
beta -0.336910 0.241542 0.00 -1.39 0.1631
sigma^2 0.002539 0.000537 0.00 4.73 0.0000
Constraints: gamma= 0.5000
Long-run mean, theta = 2.0662%
Speed of adj, kappa = 0.3369
Volatility parm, sigma = 0.0504
Cond. Vol. parm, gamma = 0.5000
Average Cond Volatility = 0.0441%
R^2 (yld change) = 0.0000
%%%%%%%Dothan
------------------ GMM PARAMETER ESTIMATES -----------------
Parameter Coeff Std Err Null t-stat p-val
sigma^2 0.115149 0.022191 0.00 5.19 0.0000
Constraints: alpha= 0.0000 beta= 0.0000 gamma= 1.0000
Long-run mean, theta = NaN%
Speed of adj, kappa = -0.0000
Volatility parm, sigma = 0.3393
Cond. Vol. parm, gamma = 1.0000
Average Cond Volatility = 0.0435%
R^2 (yld change) = 0.0000
%%%%%%%Brennan and Schwartz
------------------ GMM PARAMETER ESTIMATES -----------------
Parameter Coeff Std Err Null t-stat p-val
alpha 0.006171 0.004363 0.00 1.41 0.1573
beta -0.297537 0.238163 0.00 -1.25 0.2116
sigma^2 0.115576 0.022563 0.00 5.12 0.0000
Constraints: gamma= 1.0000
Long-run mean, theta = 2.0739%
Speed of adj, kappa = 0.2975
Volatility parm, sigma = 0.3400
Cond. Vol. parm, gamma = 1.0000
Average Cond Volatility = 0.0436%
R^2 (yld change) = 0.0000