楼主: yusb
354 0

[经管数据集] 最小二乘法简单求解(附matlab源代码和过程可视化,容易理解) [推广有奖]

已卖:21156份资源
好评率:99%
商家信誉:一般

巨擘

0%

还不是VIP/贵宾

-

威望
1
论坛币
40750 个
通用积分
2590.6735
学术水平
20 点
热心指数
31 点
信用等级
7 点
经验
7048 点
帖子
20353
精华
0
在线时间
11826 小时
注册时间
2020-12-8
最后登录
2026-1-30

楼主
yusb 在职认证  发表于 2023-11-15 08:46:27 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
最小二乘法简单求解(附matlab源代码和过程可视化,容易理解)

最小二乘法简单求解,最小二乘法是回归分析中的一种标准方法,通过最小化残差的平方和(残差是观察值和模型提供的拟合值)在每个单独方程的结果中得出。最重要的应用是数据拟合。当问题在自变量(x变量)中有很大的不确定性时,简单回归和最小二乘法就会出现问题;在这种情况下,可以考虑拟合变量误差模型所需的方法,而不是最小二乘法。最小二乘问题分为两类:线性或普通最小二乘和非线性最小二乘,这取决于残差在所有未知数中是否是线性的。线性最小二乘问题出现在统计回归分析中;它有一个封闭形式的解决方案。非线性问题通常通过迭代细化来解决;在每次迭代中,系统都近似为线性系统,因此两种情况下的核心计算都是相似的。多项式最小二乘法将因变量预测中的方差描述为自变量的函数以及与拟合曲线的偏差。当观测来自一个指数族,其自然充分统计量和温和条件得到满足(例如,对于正态分布、指数分布、泊松分布和二项分布),标准化最小二乘估计和最大似然估计是相同的。[1]最小二乘法也可以作为矩估计法推导出来。以下讨论主要是根据线性函数提出的,但最小二乘法的使用对于更一般的函数族是有效和实用的。此外,通过迭代地将局部二次近似应用


最小二乘法简单求解(附matlab源代码和过程可视化,容易理解).zip (31.61 MB, 需要: RMB 19 元) 本附件包括:
  • Readme.txt
  • simple_LS.m
b5350ed0ca8b929b9580fe03fbe0952.png




二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:matlab源代码 MATLAB atlab 最小二乘法 matla

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-31 10:35