楼主: 2023D
289 0

[课件与资料] 机器学习基础+机器学习技法Machine Learning Foundations+Machine Learning Technique [推广有奖]

  • 0关注
  • 4粉丝

已卖:678份资源

院士

13%

还不是VIP/贵宾

-

威望
0
论坛币
88 个
通用积分
168.4301
学术水平
17 点
热心指数
31 点
信用等级
14 点
经验
44755 点
帖子
1780
精华
0
在线时间
1168 小时
注册时间
2022-12-1
最后登录
2026-2-2

楼主
2023D 发表于 2023-11-27 21:14:40 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Machine Learning Foundations+Machine Learning Techniques
1.Machine Learning Foundations
(機器學習基石)

Hsuan-Tien Lin(林軒田
Department of Computer Science
&Information Engineering
National Taiwan University
(國立台灣大學資訊工程系)

Course Design (1/2)
Machine Learning: a mixture of theoretical and practical tools theory oriented derive everything deeply for solid understanding less interesting to general audience techniques oriented flash over the sexiest techniques broadly for shiny coverage too many techniques, hard to choose, hard to use properly

课件:
Lecture 7 the VC dimension.pdf
Lecture 9 linear regression.pdf
README.md
Lecture 8 noise and error.pdf
Lecture 6 theory of generalization.pdf
Lecture 1 the learning problem.pdf
Lecture 3 types of learning.pdf
Lecture 4 feasibility of learning.pdf
Lecture 15 validation.pdf
Lecture 5 training versus testing.pdf
Lecture 2 learning to answer yes or no.pdf
Lecture 16 three learning principles.pdf
Lecture 10 logistic regression.pdf
Lecture 14 regularization.pdf
Lecture 11 linear models for classification.pdf
Lecture 12 nonlinear transformation.pdf
Lecture 13 hazard of overfitting.pdf


Machine Learning Foundations.zip (21.89 MB, 需要: RMB 29 元)

2.Machine Learning Techniques
(機器學習技法)



Course Design
from Foundations to Techniques
mixture of philosophical illustrations, key theory, core algorithms, usage in practice, and hopefully jokes :-)
three major techniques surrounding feature transforms: Embedding Numerous Features: how to exploit and regularize numerous features?
inspires Support Vector Machine (SVM) model Combining Predictive Features: how to construct and blend predictive features?
inspires Adaptive Boosting (AdaBoost) model Distilling Implicit Features: how to identify and learn implicit features?
—inspires Deep Learning model

课件:
Lecture 7 blending and bagging.pdf
Lecture 8 adaptive boosting.pdf
Lecture 9 decision tree.pdf
README.md
Lecture 3 kernel support vector machine.pdf
Lecture 4 soft-margin support vector machine.pdf
Lecture 6 support vector regression.pdf
Lecture 16 finale.pdf
Lecture 5 kernel logistic regression.pdf
Lecture 2 dual support vector machine.pdf
Lecture 15 matrix factorization.pdf
Lecture 11 gradient boosted decision tree.pdf
Lecture 14 radial basis function network.pdf
Lecture 10 random forest.pdf
Lecture 12 neural network.pdf
Lecture 13 deep learning.pdf
Lecture 1 linear support vector machine.pdf


Machine Learning Techniques.zip (22.81 MB, 需要: RMB 29 元)





二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:机器学习 Feasibility Foundations Engineering information

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-2-5 08:31