楼主: Xl741852
271 0

[充实挑战] 数据中心预防工作该怎么做 [推广有奖]

  • 0关注
  • 0粉丝

博士生

88%

还不是VIP/贵宾

-

威望
0
论坛币
0 个
通用积分
133.1787
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
2140 点
帖子
176
精华
0
在线时间
57 小时
注册时间
2023-6-16
最后登录
2023-12-21

楼主
Xl741852 发表于 2023-11-29 16:48:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

数据中心预防工作该怎么做

大数据已不再是一个单纯的热门词汇了,随着技术的发展大数据已在企业、政府、金融、医疗、电信等领域得到了广泛的部署和应用,并通过持续不断的发展,大数据也已在各领域产生了明显的应用价值。

企业已开始热衷于利用大数据技术收集和存储海量数据,并对其进行分析。企业所收集的数据量也呈指数级增长,包括交易数据、位置数据、用户交互数据、物流数据、供应链数据、企业经营数据、硬件监控数据、应用日志数据等。由于这些海量数据中包含大量企业或个人的敏感信息,数据安全和隐私保护的问题逐渐突显出来。而这些问题由于大数据的三大主要特性而被进一步放大:数据量大(Volume)、数据增长快(Velocity)和数据多样化(Variety)。

现在,当我们说“大数据”的时候,已不再是单指海量的数据了,而是基础设施(云服务器)、应用、数据源、分析模型、数据存储和平台的组合,而正是这些使得大数据安全面临着不同寻常的挑战。

与传统数据安全相比,大数据安全有什么不同传统数据安全技术的概念是基于保护单节点实例的安全,例如一台数据库或服务器,而不是像Hadoop这样的分布式计算环境。传统安全技术在这种大型的分布式环境中不再有效。另外,在大规模的Hadoop集群中,各服务器和组件的安全配置出现不一致的机率将大大增加,这将导致更多的安全漏洞产生,大数据平台存储着各种各样的数据,每一种数据源都可能需要有其相应的访问限制和安全策略。而当需要整合不同数据源时,就变得更加难以平衡对数据的安全策略的应用。同时,快速增长的海量数据使得大数据平台中的敏感信息和个人隐私信息无处不在,准确发现和定位敏感信息并制定针对性的访问控制策略变得愈加困难,而对敏感信息的访问的实时监控也是保障大数据安全的重要任务之一。

最后,大数据技术很少单独使用Hadoop,而是会结合生态系统中的其它技术组件如HBase,Spark,Impala,Hive,Pig等对数据进行抽取、存储、处理、计算等。这些技术使得大数据可被访问和利用,但基本都缺乏企业级的安全特性。以上从平台、数据、技术视角对大数据安全与传统数据安全进行了简单的分析,传统安全工具没有为数据多样化、数据处理及Hadoop的分布式特性而改进,不再足以能保证大数据的安全。


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:数据中心 怎么做 variety Hadoop volume

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-2-2 20:20