楼主: dream_er79
693 1

[书籍介绍] TRANSFORMERS VERSUS LSTMS FOR ELECTRONIC TRADING [推广有奖]

  • 0关注
  • 0粉丝

已卖:4份资源

学术权威

1%

还不是VIP/贵宾

-

威望
0
论坛币
3926 个
通用积分
46.5130
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
211139 点
帖子
2092
精华
0
在线时间
2030 小时
注册时间
2009-3-18
最后登录
2026-1-30

楼主
dream_er79 发表于 2024-3-31 03:20:48 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
This is a paper on arXive. TRANSFORMERS VERSUS LSTMS FOR ELECTRONIC TRADING.pdf (6.86 MB, 需要: 5 个论坛币)
Abstract:
                                                                                                                                               
                                                                                                                                                [size=10.000000pt]With the rapid development of artificial intelligence, long short term memory (LSTM), onekind of recurrent neural network (RNN), has been widely applied in time series prediction.
                                                [size=10.000000pt]Like RNN, Transformer is designed to handle the sequential data. As Transformer achievedgreat success in Natural Language Processing (NLP), researchers got interested in Trans-former’s performance on time series prediction, and plenty of Transformer-based solutionson long time series forecasting have come out recently. However, when it comes to financialtime series prediction, LSTM is still a dominant architecture. Therefore, the question thisstudy wants to answer is: whether the Transformer-based model can be applied in financialtime series prediction and beat LSTM.
                                                [size=10.000000pt]To answer this question, various LSTM-based and Transformer-based models are comparedon multiple financial prediction tasks based on high-frequency limit order book data. Anew LSTM-based model called DLSTM is built and new architecture for the Transformer-based model is designed to adapt for financial prediction. The experiment result reflectsthat the Transformer-based model only has the limited advantage in absolute price sequenceprediction. The LSTM-based models show better and more robust performance on differencesequence prediction, such as price difference and price movement.
                                       
                               
                       
               
                               
                       
               



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Transformers electronic transform Electron Trading

沙发
bbcer314(真实交易用户) 发表于 2024-4-1 08:56:45
多谢分享!

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2026-2-3 23:58