- set.seed(100)
- library(MASS)
- library(binarySimCLF)
- N=2100
- T=10
- x1=list()
- for(i in 1:N){x1[[i]]=runif(T)}
- x2=list()
- for(i in 1:N){x2[[i]]=runif(T)}
- x3=list()
- for(i in 1:N){x3[[i]]=runif(T)}
- x4=list()
- for(i in 1:N){x4[[i]]=runif(T)}
- x5=list()
- for(i in 1:N){x5[[i]]=runif(T)}
- X1=unlist(x1)
- X2=unlist(x2)
- X3=unlist(x3)
- X4=unlist(x4)
- X5=unlist(x5)
- f1=1.5*X1^2-mean(1.5*X1^2)
- f2=2*sin(2*pi * X2)-mean(2*sin(2*pi * X2))
- f3=.8*cos(2*pi*X3)+X3^.5-mean(.8*cos(2*pi*X3)+X3^.5)
- f4=-1.5*sin(2*pi*X4)+X4^2-mean(-1.5*sin(2*pi*X4)+X4^2)
- f5=1.5*sqrt(X5)+cos(2*pi*X5)-mean(1.5*sqrt(X5)+cos(2*pi*X5))
- f=f1+f2+f3+f4+f5
- # generating correlated discrete data
- library(binarySimCLF)
- y = matrix(rep(NA,T*N),N,byrow=TRUE)
- f0=matrix(f,N,byrow=TRUE)
- mu =exp(f0)/(1+exp(f0))# mean matrix
- for (i in 1:N)
- {
- rho=(rhoRange(mu[i,])$rhomax+rhoRange(mu[i,])$rhomin)/2
- temp = ranXch(mu[i, ], rho)
- if (temp$succeed)
- y[i,] = temp$y
- }


雷达卡
京公网安备 11010802022788号







