
在用STATA时,为什么命令sw reg y x1 x2 x3 x4 x5 x6 x7,pr(.10)和sw reg y x1 x2 x3 x4 x5 x6 x7,pe(.10)的回归结果不一样~哪个更可信呢?
sw ologit y x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13,pe(.10)
begin with empty model
p = 0.0159 < 0.1000 adding x6
p = 0.0609 < 0.1000 adding x5
p = 0.0971 < 0.1000 adding x2
Ordered logistic regression Number of obs = 35
LR chi2(3) = 17.25
Prob > chi2 = 0.0006
Log likelihood = -33.384154 Pseudo R2 = 0.2053
y Coef. Std. Err. z P>z [95% Conf. Interval]
x6 .0438938 .0266138 1.65 0.099 -.0082682 .0960558
x5 2.845029 1.365265 2.08 0.037 .1691582 5.520901
x2 .750995 .4526318 1.66 0.097 -.136147 1.638137
/cut1 -2.400478 .7695964 -3.90886 -.8920972
/cut2 .8391373 .4776718 -.0970822 1.775357
/cut3 3.38809 .8004838 1.81917 4.957009
. sw ologit y x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13,pr(.10)
begin with full model
p = 0.9849 >= 0.1000 removing x3
p = 0.9684 >= 0.1000 removing x10
p = 0.7306 >= 0.1000 removing x13
p = 0.6850 >= 0.1000 removing x8
p = 0.5804 >= 0.1000 removing x5
p = 0.3484 >= 0.1000 removing x1
p = 0.2298 >= 0.1000 removing x12
p = 0.2814 >= 0.1000 removing x4
p = 0.2231 >= 0.1000 removing x9
p = 0.1129 >= 0.1000 removing x11
Ordered logistic regression Number of obs = 35
LR chi2(3) = 16.80
Prob > chi2 = 0.0008
Log likelihood = -33.611169 Pseudo R2 = 0.1999
y Coef. Std. Err. z P>z [95% Conf. Interval]
x7 .1793151 .0904187 1.98 0.047 .0020977 .3565325
x2 .8587624 .4371713 1.96 0.049 .0019224 1.715602
x6 .0735324 .0290028 2.54 0.011 .016688 .1303769
/cut1 -2.047015 .7583459 -3.533345 -.5606842
/cut2 1.126754 .5373524 .0735629 2.179946
/cut3 3.697584 .8773536 1.978003 5.417165


雷达卡





京公网安备 11010802022788号







