几类具有不连续激励函数神经网络模型的动力学研究
本文通过运用拓扑度理论,多值版本的Leray-Schauder选择定理,不动点定理,不等式技巧,Lyapunov泛函及矩阵理论等相结合的方法对几类具有混合时滞(即同时具有时变时滞和分布时滞)和不连续激励函数的神经网络模型的动力学性态进行了研究,讨论了这些网络模型平衡点或概周期解的存在性,唯一性,全局稳定性,输出解的收敛性,有限时间一致收敛性等等.我们的结论不但削弱了众多结果中对激励函数的限制,而且推广了已有文献的相关结论,从而对神经网络的设计有重要的指导意义.本文做了如下几个方面的工作:首先,我们利用多值版本的Leray-Schauder选择定理,广义李雅普诺夫泛函和不等式等方法研究了一类具有混合时滞(即同时具有时变时滞和分布时滞)和不连续激励函数的Cohen-Grossberg神经网络模型,获得了该系统的状态变量的平衡点存在性,唯一性及全局指数稳定的充分条件,而且讨论了输出解的收敛性.此处,激励函数可以是无界的、非单调的,甚至激励函数在其不连续点的左极限并不需要小于右极限,这在其他关于具有不连续激励函数的Cohen-Grossberg神 ...


雷达卡




京公网安备 11010802022788号







