第四章无约束优化计算方法new
求解优化问题的基本解法有:
解析法:即利用数学分析(微分、变分等)的方法,根据函数(泛函)极值的必要条件和充分条件求出其最优解析解的求解方法 。在目标函数比较简单时,求解还可以。
局限性:工程优化问题的目标函数和约束条件往往比较复杂,有时甚至还无法用数学方程描述,在这种情况下应用数学分析方法就会带来麻烦。
4.1 引言
数值迭代法的基本思路:是进行反复的数值计算,寻求目标函数值不断下降的可行计算点,直到最后获得足够精度的最优点。这种方法的求优过程大致可归纳为以下步骤:
1)首先初选一个尽可能靠近最小点的初始点X(0),从X(0)出发按照一定的原则寻找可行方向和初始步长,向前跨出一步达到X(1)点; 2)得到新点X(1)后再选择一个新的使函数值迅速下降的方向及适当的步长,从X(1)点出发再跨出一步,达到X(2)点,并依此类推,一步一步地向前探索并重复数值计算,最终达到目标函数的最优点。
数值解法求解步骤


雷达卡


京公网安备 11010802022788号







